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I. Introduction: The metastatic process of cancer 
 
When cancer cells detach from an original tumor site to spread throughout 
the body, it is called metastasis. Metastatic cancer cells can move either by 
direct contact with new organ sites or through the blood or lymphatic 
systems of the body, but there is a generally accepted path process for this 
spread (1). First, the cells invade healthy tissue close to the original 
cancerous site, most likely by lymph or blood vessels—this is called 
intravasation (3). Once they are in one of these circulatory systems, the 
cancer cells travel to distant parts of the body. They stop in small blood 
vessels called capillaries where they traverse through the vessel walls and 
into surrounding tissues through a process called extravasation. The cells 
reproduce to develop small micrometastatic tumors. If the small tumor is 
able to stimulate growth of new blood vessels to attain a blood supply, the 
tumor can grow larger into a full-fledged metastatic tumor. Thriving 
metastases are also contingent on the properties of the noncancerous cells, 
such as immune system cells at the original and new sites as well as ones 
they encounter on their journey through the body (1). While it is believed 
that all types of cancer are able to spread metastatically, not every singular 
cancer cell has the ability to metastasize on its own. The most common sites 
of metastasis for all cancers (excluding lymph nodes since they are a method 
of transit for the cells) are the bone, liver, and lungs (1). The diagram below 
shows how cancer will spread from any original tumor site to various 
metastatic growth sites in the body. 



	
  

 
An overview of the metastatic process (3) 

 
 
It is important to note that even after the cancer has established a metastatic 
tumor in a new area of the body, the cancer itself is still the original type of 
cancer. For example, if cancer of the lung grows in the breast, the new tumor 
is still lung cancer that happens to have grown in the breast. The new cancer 
often has similar molecular features and causes the same protein and 
chromosome changes as the original (1). 
 It is possible for cancer to metastasize and lie dormant for years or 
even forever without growing enough to show symptoms of cancer at the 
new site. Since all types of cancer are susceptible to metastasis, experts have 
been working for decades to develop mathematical models to show the 
likelihood of metastasis in different locations of the body for all types of 
cancer. Creating a general model of metastasis has proven to be very 
difficult because cancer is a multifaceted process dependent upon a variety 
of cellular and micro-environmental parameters (11). Cellular parameters 
include “altered rates of cell proliferation, apoptosis [programmed cell death 
(15)], migration, adhesion, metabolism and mutation” (11). Micro-
environmental constraints consist of “extracellular matrix composition, 



	
  

angiogenesis [development of new blood vessels (15)], inflammation and 
proteases [“enzymes that catalyze the splitting of proteins into smaller 
peptide fractions and amino acids by a process known as proteolysis” (15)]”. 
The most common methods of modeling are the use of Markov Chains, or 
partial differential equations, to determine the probability of different 
metastatic scenarios for different kinds of cancer. While some studies focus 
on cancer in general and others focus on specific cancer types, each study is 
useful since the process of metastasis is believed to be virtually the same for 
all cancers, even though the sites change from type to type. This paper will 
summarize five existing models and evaluate their dissimilarities to 
determine the best course of action in predicting metastasis in several types 
of cancer. 
 
 
II. Models of Metastatic Cancer 
 
A.  Markov	
  Chains 
 
Newton et al. (8) took a Markov approach to identify the timeline and design 
of metastatic spread. They focused on lung cancer alone to gain a better 
understanding of the exact process of how the cancer cells reproduce and 
spread from the lungs to other parts of the body (3). Through their model, 
they showed that metastatic cancer is multi-directional, not unidirectional as 
many studies originally believed (8). The traditional “seed and soil” view 
was that circulating tumor cells (CTCs) are responsible for the spread by 
detaching from the primary tumor and traveling through the bloodstream and 
lymphatic system to new organs where, if conditions are favorable, they are 
able to reproduce and induce tumor growth. This model was unidirectional 
in that the CTCs travel from the primary to the new site only and do not 
return to the primary. Newton et al. cited more recent studies that had 
introduced the idea of “self-seeding”, where CTCs that have left the primary 
site return and begin reproducing again. They also suggested that metastatic 
self-seeding (“metastasis from metastases”) may even be possible. In their 
study, the authors defined three general classes of the cancer progression: 
self-seeding of the primary tumor, reseeding of the primary tumor from a 
metastatic site, and reseeding of metastatic tumors (8). 

Newton et al. began by developing a network of organs susceptible to 
the cancer and assumed that any organ could receive the cancer from any 
other organ in the chain. Since they were using the data from autopsy results 
after long-term progression of the disease, they started the study already 



	
  

knowing the final steady-state vector that would normally be found after 
many iterations of the transitional matrix. They then used an iterative Monte 
Carlo method—one that generates random numbers and observes the 
fraction of the numbers that obey a property or properties (14)—to solve for 
the probabilities of cancer cell transition between each organ to find the 
original P transitional matrix. They applied a discrete Markov chain system 
to this P matrix to determine the probabilities of different metastatic routes. 
From this data, they developed the diagram below to show how the cancer 
can spread from the lungs. The innermost ring consists of “first-order” sites, 
ones in direct contact with the lungs, starting with the most probable first 
step of metastasis (regional lymph nodes) at 12:00 with probability 
decreasing clockwise around the circle to the least likely first step of 
metastasis (skeletal muscle). The outer ring consists of “second-order” sites, 
ones where, for cancer to metastasize, it usually must first pass through a 
first-order site (8). Their diagram accounts for the multi-directional steps 
that allow the cancer to feed back into the lung or any metastatic site with 
arrows directed back toward those sites. Overall, they identified 756 possible 
two-step paths. They defined the strongest metastasis re-seeders as lymph 
nodes, followed by liver, adrenal bone, and kidney (8). They did a 
convergence analysis of their algorithm against the data set and noted that 
the only non-convergence occurred when they eliminated any possibility of 
primary metastasis or metastatic re-seeding and made the model uni-
directional. However, when all connections in the diagram were allowed, the 
algorithm converged to a solution and produced a transitional matrix with 
many connections from site to site. They noted that after two iterations of 
their Markov chain, the state-vector had almost converged to the steady-state 
vector for metastatic tumors, effectively showing that lung cancer metastasis 
is a two-step process (8). 



	
  

 
Diagram of metastatic spread of cancer from the lungs (8) 
 
Through their study, Newton et al. were able to identify sites as either 
contributors to metastatic spread or as absorbing states by comparing the 
probability of cancer cell movement out of the site (Pout) over the probability 
into the site (Pin) (8). They defined “spreaders” like the adrenal gland and 
kidney as sites where Pout > Pin, meaning that if the cancer came to those 
organs it would likely be dispersed to other organs as well. Contrarily, they 
called sites like regional lymph nodes, the liver, and bone “sponges”, where 
Pin > Pout, implying that the cancer would be limited to these locations 
instead of traveling and metastasizing elsewhere in the body. Their study 
included a graph of time-progression of the cancer through the different 
metastasis sites. While a patient’s doctor may not be able to definitively 
predict the location of his or her cancer’s first metastasis, this graph would 
be helpful in determining the timeline and future progression of the cancer 
once the first site is known. The graph can also be used to suggest treatment 



	
  

methods of a specific cancer progression, especially whether resections at 
certain sites would be helpful or of no significant benefit to the patient. 

 
Timeline of Lung Cancer Progression and Treatment (8) 

 
Liotta et al. also used a Markov approach, but instead of only studying 

the movement of single CTCs, they considered that cancer cells travel in 
masses of assorted size (2). Their model consists of three types of tumor 
clumps: “tumor cell clumps in the circulation, tumor cells clumps arrested in 
the pulmonary capillary bed, and pulmonary metastatic foci” (2). They used 
their experimental data to base their study on the assumptions that clump 
death rate is inversely proportional to its size, that colonization rate is 
linearly correlated with clump size, and that the entry rate of clumps depends 
on size and follows a decaying power-law. They defined their overall 
objective as being to “provide a framework for predicting the development 
of metastatic foci from clumps in the pulmonary vessels and the probability 
of no metastatic foci existing after tumor initiation” (14). 

Liotta et al. developed a two-dimensional Markov process to 
determine the probability of the population sizes of metastatic foci and 
tumor cell clumps at any time (14). The first state involves cancer cells 
penetrating the tumor wall to become exposed on the inner vessel surface. 
Once they are exposed, the tumor cells enter the blood circulation in clumps 
of varying size. Liotta et al. determined that clumps of four cells or greater 
would progress in the pulmonary blood vessels, but that smaller clumps and 
singular cells would adhere to the inner layer of the vessel and stop moving. 
They established that death of cell clumps could occur due to a variety of 
causes and created a probability equation to account for these reasons, which 



	
  

included “destruction by host defense, removal from the pulmonary vessels, 
aging factors, or sheer stress damage” (14). This equation did not account 
for the loss of tumor cell clumps that had transformed into metastatic foci; 
they instead established a separate equation for the formation rate of 
metastatic foci from a tumor clump. They found that there is a direct 
correlation between the number of cancer cells that enter the bloodstream 
and the subsequent number of pulmonary metastases. They also determined 
that if cell clumps are larger, there is a greater number of resulting 
metastases, even if the overall number of cells entering the circulatory 
system is the same. They noted that in cancer cases, their model for the 
survival of cancer cells in the bloodstream might have significance in the 
prognostic process of a metastatic cancer (14).  

Divoli et al. (5) also utilized a Markov approach, but instead of basing 
their study solely on raw data or experiments, they also interviewed 28 
experts in different medical disciplines (breast, prostate, gastrointestinal, 
genetics, etc.). In these interviews, they requested a personal definition of 
metastasis from each interviewee and attempted to gain insight on the 
experts’ answers to key questions: “When do cells acquire metastatic 
abilities? What is the basis and importance of tropism [‘an involuntary 
orienting response; positive or negative reaction to a stimulus source’ (15)]? 
What (If any) is the relationship between metastasis, development and 
evolution?” (5). They analyzed the results in two ways. First, they used a 
chi-squared statistic to determine disparities in answers across the question 
topics and the difference in interest of each topic between the expert groups. 
Then they quantified similarity and dissimilarity between pairs of experts by 
employing a metric that corresponded each stage of metastasis with a letter 
to determine each expert’s thoughts on the chain of metastasis and then 
comparing his or her chain with another expert to determine the level of 
similarity (Sij) or dissimilarity (Dij). They defined similarity as “twice the 
number of ordered pairs common to the two sets” where Sij = Sii + Sjj (15). 
They defined dissimilarity as “similarity minus the sum of all unmatched 
pairs of event from the two sets,” where Dij = Sii + Sjj – 2 Sij. They were able 
to create a set of quantitative data to use in a Markov Chain process to 
determine each expert’s opinion of the sequence of events in metastasis and 
create a standard to measure future experimental and observational data 
against (15).  
 To begin their Markov calculations, they created a transitional matrix 
P to represent each expert’s proposed path of metastasis with each entry of 
the matrix Pij representing the probability of transition from state i to state j. 
They assumed each metastatic stage would depend only on the one directly 



	
  

before, that transitional probabilities from one state to another would not 
change across the sequence, and that the cancer would not transition to itself. 
They defined N=28 possible states within the metastatic path (one from each 
expert), with each path starting at a state S and ending at a state E, and found 
that always ending the chain at stage E results in a steady state distribution 
vector of π = (0,0,…,1) defined by the distribution of transition probabilities 
using a Dirichlet distribution: 
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assuming α ≥ N-2. They also determined that the posterior distribution for pij 
was a conjugate Dirichlet distribution: 
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with the posterior expectation estimate of pij given by  
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where {cij} is the set of observed counts of metastasis transition from all 
experts and 
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During the interviews, Divoli et al. (5) presented each expert with a 
supposed belief of the metastatic process that was purposely confused, 
expecting corrections and revisions. The experts would then suggest 
additions, deletions, and changes in the sequencing, which is shown in the 
diagram below. Overall, all experts agreed on the significant events 



	
  

throughout the process, but not on the exact path of progression. They did, 
however, describe the steps in similar ways and, for the most part, agreed on 
the relative importance of each stage (5).  

 
Visualization of expert views about the important stages of metastasis (9) 

 
Since there was a significant disparity in how each expert considered the 
metastatic process, the team introduced a metric to compare two series of 
elements (two experts’ descriptions) to determine the probability of any 
random pair of experts agreeing or disagreeing on at least k statements (5). 
They noted that the probability of agreement quickly dropped with k 
increasing while the probability of disagreement grew more gradually, 
which is shown in the graph below. 



	
  

 
Quantifying the agreement between expert scenarios of metastasis (9) 

 
 In the conclusion of their study, Divoli et al. noted that the results they 
found were much more diverse and disconnected than they were expecting 
(5). The team anticipated some disparity in the experts’ opinions of the 
smaller details but thought they would agree on the larger, more important 
aspects of the process. However, each expert’s interpretation of metastasis 
was distinctly different from the rest. The amount of disproportion in the 
results reinforces the notion that metastasis is an extremely complex process 
with many different factors and possible paths. The Markov model that 
Divoli et al. presented is a first step and incentive to continue further 
research and development of a standardized consensus to gauge individual 
cancer progression so that clinicians will be able to better predict how 
metastasis will progress in every case. 
 
 
 



	
  

B. Partial Differential Equations 
 
Ramis-Conde et al. (9) focused their study of metastasis development not on 
the stages or chain of cancer cell movement, but on how the CTCs are able 
to leave the original tumor to migrate to other organs and tissues. They 
acknowledged that it is first necessary for the cancerous cells to penetrate 
the extracellular matrix (ECM) of the original site in order to invade 
surrounding tissue or enter the blood stream or lymphatic system to move 
throughout the body. They noted that the cancer cells must have the 
capability to produce reactions that would allow them to travel through the 
ECM, which would require degradation of the ECM. Therefore, they 
developed a hybrid model using partial differential equations that 
incorporated the interactions of individual cells with the ECM as well as the 
interactions of cells with each other. 

The first part of their model assumes that the process of migration of a 
CTC through the ECM is triggered by contact between the ECM and the cell 
(9). When a cancer cell touches the ECM, it releases matrix 
metalloproteinases (MMPs) to degrade it. They defined the following 
equations: 
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where M is the density of the ECM, E is the concentration of the MMPs, and 
A is the resulting density of the degraded ECM, which stimulates sells to 
migrate through the ECM. The tumor cell size N at a time t in a 
neighborhood of x is defined by 

𝑁 𝑥, 𝑡 = 𝐼!! ! (𝑥!

!!!

!!!

) 

where IBε(x)(xi) is a heavyside function 

 



	
  

and Bε(x) is the ball of radius ε, centered at x. Xi is the position of the ith 
cell. 1 refers to the immediate production of enzymes by the cells within that 
radius, meaning that production is non-existent (0) if it is outside of the 
radius. They incorporated the interactions between cells in this model by 
assuming they would interact via the potential function below if their 
distance apart is less than ε, which they standardized as twice the size of the 
average cancer cell. The potential energy V between two cells at a time t is 
given by  

 
where d is the distance, h is the capacity to bond, and e∞ is the maximum 
possible energy. They represented the bonds connecting a set of cells greater 
than two as  

 
where Bε(xi) is a neighborhood with center xi and radius of the maximum 
intercellular distance of ε. They assumed that cells would move closer to 
minimize the potential function between them at a constant speed, defining 
the direction of the cells movement (D) as 

 
where r indicates the cells’ sensitivity to the chemoattractants—properties 
that incite cells to interact with each other.  

As they proceeded in their study, Ramis-Conde et al. realized that 
they could drop off their original equation for ∂/∂t E(x,t) once they found 
evidence that the matrix degradation was confined to the areas of the ECM 
in contact with cells, and that the degradation process could be quantified 
without requiring the knowledge of the concentration of the MMPs. They 
considered the more straightforward system 

 
which they solved to determine that the ECM is defined by 

 



	
  

and the density of the degraded ECM by an individual cell is given by 

, 
taking into account the chemoattractants it is simultaneously releasing. 

While they began their study hoping to demonstrate how one cell 
degrades the ECM and contributes to cancer spread, they ultimately realized 
that the degradation of ECM is positively correlated to heightened 
interactions between cells, as shown by the diagram below. Even when 
treating cells as individual entities, the chemoattractant gradients of those 
cells are extremely important in the invasion process. 

Ao et al. (7) assumed that cancer progression is a stochastic process 
that can unintentionally transition cells from one stable tumor site to another, 
so cancer can spread unexpectedly and drastically even if it has remained in 
one spot for an extended period of time. They aimed to determine the 
cancer’s endogenous network by mapping the pathways and modules that 

the cancer and other molecular and cellular agents may develop. They 
hypothesized that there is at least one level of virtually independent 
interaction between genetic and environmental factors that would allow one 
to map the spread of a cancer. 

Ao et al. began by establishing the interactions between endogenous 
agents—ones that contribute to cancer growth in the body—and the enzymes 

Plots of evolution of cancer cells as they invade the ECM (9) 
	
  



	
  

that activate or inhibit those agents from spreading through the body (7). 
They focused their study on prostate cancer, which is denoted by the 
occurrence of androgen receptor (AR) and the insulin-like growth factor 
receptor (IGF-1R) in the table below. 

 
Table of interactions among cancer agents from targeted pair-wise 

experimental data (7) 
 



	
  

 
Directed graph representation of the interactions from the table above (7) 

 
They then formed an equation to represent the set of stochastic dynamics 
found in this network: dx/dt = f(x) – x/r + ε(x,t), which shows that the 
deterministic force f can be modeled as sigmoidal (s-shaped) functions 
between 0 and 1 (7). They also defined the equations for activation, fA(y) = 
ayn/(1 + ayn), and inhibition, fI(y) = 1-fA(y) = 1/(1 + ayn), where the 
variables are normalized to the values a = 10 and n = 3 and the degradation 
time r is constant. They modeled this using a diffusion matrix D that they 
chose to be diagonal to simplify the calculations.  
 Ao et al. assumed that there would be multiple stable states and 
therefore there would be 3 possible outcomes of interactions with 
endogenous agents: states that parallel the healthy ones under normal 
conditions, stressful states that may lead to tumor growth, and ones in the 
tumor growth phase (7). The values in the table below are given in terms of 
their maximum activity. 



	
  

 
Table showing endogenous agent activity in 3 possible states of cancer 

growth (7) 
 
Ao et al. stressed the need for a minimum amount of endogenous agents (37 
in their model for prostate cancer) in order for cancer to spread. They noted 
that the table of activity above indicates that there is a limited probability 
that cancer will occur spontaneously, even without mutations or other 
debilitating factors, and that with further experimental observation, a more 
accurate quantitative model of cancer genesis and progression using 
endogenous agents is possible (7). 
 
 
 
 



	
  

III. Evaluation: Disadvantages 
 
There are aspects of each of these studies that can be helpful in future 
prognoses of cancer, but there are also many disadvantages. The studies by 
Newton et al. (8) and Ao et al. (7) considered only specific types of cancer: 
lung and prostate, respectively. While both studies presented a rough 
network of CTCs in the body, one can’t assume that the pathways they 
discovered would be applicable to every cancer possible. There are many 
environmental factors that could affect other types of cancer differently, like 
proximity to other organs. One major drawback of the Divoli et al. (5) study 
was that they did not use any scientific or experimental data—their entire 
study is based on the opinions of 28 humans. While these humans were 
experts in their fields, the sample size was extremely small compared to the 
different amounts of cancerous and metastatic situations that can arise. 
Ramis-Conde et al. (9) accounted for many factors that could inhibit the 
progression of cancerous cells through the body, but their study did not 
include any information on the timeframe of metastasis, where the 
metastases would occur, or the amount of metastasis locations that are 
possible. Liotta et al. (14) also neglected to identify any metastatic pathways 
or networks. 
 
IV. Conclusion 
 
Through this research, over ten different mathematical models of cancer 
were considered, including not just the Markov chains and partial 
differential equations mentioned here, but also ordinary differential 
equations (6), cellular automata (10), least squares and time-branching (4), 
and graph evolution (11), among others. The amount of data on the subject 
seems overwhelming, but it becomes clear why such a large number and 
different types of studies are necessary after learning more about the process 
and factors of metastasis. Since metastasis is such a multi-faceted, complex 
process with so many factors contributing to its progression, it would be 
extremely difficult to attempt to create one model to determine metastatic 
spread of all cancers and take into account every possible scenario. In the 
past few decades, researchers have developed studies on different aspects of 
the metastasis dilemma, such as how cancer leaves the primary tumor, how 
it travels through the body, factors in the body and cancer cells that prohibit 
it from surviving a journey, factors that allow cancer to settle in a new area, 
and what stages are included in the metastatic process. Since it is so 
problematic to establish a universal model, it is helpful to have models on so 



	
  

many different stages of the disease that can be combined to determine an 
individual cancer’s progression and decide the best course of treatment for 
that person. Ultimately, the largest benefit of these models is not to 
accurately predict the exact path the metastasis will take, but to be able to 
anticipate whether metastasis is likely or not. Once this is known, the 
physician can determine whether a general cancer treatment like 
chemotherapy is necessary or if removing the primary cancer with radiation 
or resection would be enough to rid the body of dangerous cancer cells. 
While the studies that were discussed have various limitations, there are 
results in each that can either be used or built upon to become beneficial 
instruments in the prognosis of cancer and increasing a patient’s likelihood 
of remission. 
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