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Analysis of Fractals from a Mathematical  
and Real-World Perspective 
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Mathematics 
 
Historical Background 
 
Fractals give us a way to visually and quantitatively observe various abstract and 
real-world phenomena. Mathematician Benoit Mandelbrot coined the word 
“fractal” in 1975 (Stewart, Clark, Mandelbrot, et al., 5) while working at IBM but 
other mathematicians had studied these geometric structures long before him. 
During the 18th and 19th centuries, Calculus was gaining mass appeal. Most 
mathematicians of this period believed that all continuous curves could have 
tangent lines drawn at any point on the function, except at cusps. In 1872, 
Mathematician Karl Weierstrass, described a family of curves that were continuous 
but not differentiable at any point (Stewart, Clark, Mandelbrot, et al., 6-7). This 
discovery surprised mathematicians because it challenged current ideas about 
mathematics (Eglash, 12). Mathematicians were somewhat uncomfortable with the 
idea of continuous curves that could repeat, or iterate, themselves infinite times 
within a finite space. Two questions arose from this period: What are the 
dimensions of these curves, and can we measure the lengths of these “pathological 
curves” as they iterate over and over again in a finite space?  
 In the early 20th century, Mathematician Felix Hausdorff, helped make the 
idea of fractional dimension clear, believing fractals to be in an in-between 
dimension as they were not quite two-dimensional objects or one-dimensional 
mathematical structures. His main contribution to this area of mathematics was the 
Hausdorff dimension (Barnsley, p. 171): 
 

𝑑 =
ln𝑁
ln 𝑠

 

where d is the dimension, N is the number of self-similar pieces of the geometric 
object in question, and s is the scaling or magnification factor. 
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 Mandelbrot took Hausdorff's idea one-step further when he explored how to 
measure the coastline of Great Britain using different measures. He determined 
that if you use a smaller and smaller measuring instrument approaching a length of 
zero units, the approximation of the coast gets larger and larger, approaching 
infinity. He also discusses the idea of fractional dimension, comparing the 
coastline of England to the Koch Snowflake, yielding a dimension of 1.26 for the 
Koch Snowflake and 1.25 for the coastline (Mandelbrot, 1-5). He was not implying 
that the Koch Snowflake and the coastline of England had the same structure but 
that the overall dimension, or statistical self-similarity, was similar.  This historical 
background lays the groundwork for our study of the mathematics underlying 
fractals and their applications to our world.  

Definitions and Classic Examples of Fractals  

A fractal is “a rough or fragmented geometric shape that can be split into parts, 
each of which is a reduced-size copy of the whole” (Frailey, “Fractals”). Four main 
mathematical characteristics define fractals: recursion, self-similarity, fractional or 
non-integer dimension, and the concept of infinity (Eglash, 17).  
 

1. Recursion refers to an algorithmic reliance on the previous iteration of a 
fractal to produce the next iteration of the fractal design.  A recursive 
example that may be familiar to readers is the Fibonacci sequence: 1,1, 2, 3, 
5, 8… which can be defined as f1 = 1, f2 =1, fn = fn-1 + fn-2, where fn is the nth 
term of the sequence, and fn-1 and fn-2 are the two previous terms.   

2. Self-similarity refers to a fractal representing its original form at different 
levels of magnification; in layman’s terms, whether you zoom in or out of 
the graphical representation of the fractal, the fractal maintains its original 
structure. Mandelbrot (p. 1) defined statistical self-similarity as “each 
portion can be considered a reduced scale image of the whole,” referring to 
the scaling dimension.  

3. Fractional dimension, calculated via the Hausdorff dimension definition, 
relates to the self-similarity characteristic of a fractal appearing the “same” 
despite the scaling factor.  

4. Many fractals, such as the Cantor set, make use of the concept of infinity as 
they can iterate themselves an infinite number of times within a finite space.  
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Fractals are examples of dynamical systems, so it is important to review 
some important definitions and terms: 

 
1. A dynamical system, in very simplistic terms, describes how a set of 

variables behaves under different states or conditions over time (Devaney, 2-
7).   

2. Chaos describes the phenomenon that occurs when slight changes to initial 
conditions, in the dynamical system, result in varied behavior for the entire 
system (Devaney, 49-50). A famous example is the Lorenz attractor.  This 
result was produced after Dr. Edward Lorenz was trying to make weather 
predictions using differential equations and found you could not make 
accurate long-term predictions due to the chaotic nature of the system.   

3. When polynomials and trigonometric functions are iterated, they produce 
simple dynamical systems. The dynamics of these systems can be described 
by orbits, or set of iterated points, that may converge to fixed point(s) or 
periodic points, or may never converge, moving chaotically throughout the 
space. 

4. Fixed points can behave as attractors or repellers. If a fixed point behaves 
as an attractor, nearby orbits of the dynamical system will converge to the 
value of the fixed point. However, on the other hand, if a fixed point behaves 
as a repeller, nearby orbits of the dynamical system will not converge to the 
value of the fixed point of interest (Devaney, 17-37).  

 
Through the use of phase-portraits and cobweb diagrams, it is possible to 
qualitatively observe the behavior of these dynamical systems and make inferences 
regarding their behavior. 
 
 
 
 
 
  

 

 

 

 

Figure 1 – Cobweb Diagram 



CONCEPT, Vol. XXXIX (2016) 
  

4 

The classic example of a fractal is known as the Cantor Set, created by 
Georg Cantor. He devised this fractal by taking a line segment of length 1 and 
proceeded to cut the line segment into pieces by removing the middle third of each 
line. In other words, you start out with line segment on the real number line on 
[0,1], then you break this down into two sub-interval [0,  !

!
 ] U [!

!
,1], and continue 

iterating or repeating the process resulting in the union of infinite sets, each a 
subset of [0,1].  

Another interesting result is what happens to the length of the set upon 
iteration, it starts out at 1, then 1-  !

!
 =  !

!
, followed by !

!
  − !

!
(!
!
) = !

!
− !

!
  = !

!
,  ... . The 

length gets smaller each time. The geometric series  !
!

!
!

!𝑛
  !

!!! , describes the 
lengths of the all the segments being removed, and using the results from Calculus, 

we know this series converges to !𝑎
!!!𝑟

=
!
!

!!!!
=

!
!
!
!
= 1, where a is the first term of 

the geometric sequence and r is the common ratio (Crilly, Earnshaw, Jones, 10). 
However, if the entire length of the interval is 1 and the convergence of all the 
parts removed is also 1, then 1 -1 = 0, meaning the length of the entire Cantor set is 
0. If you continue this recursive process, the nth iteration of this fractal will consist 
of an infinite number of points. These points will be disconnected from each other 
and eventually reach length zero on [0,1].   

The dimension of the Cantor set can also be found using the Hausdorff  
Dimension definition,  𝑑 = !"  !

!" !
  = !" !

!"  (!)
= 0.63  (“Dimension of Cantor Set”).  

Notice: There are 2𝑛  divisions of the intervals and you are scaling down the Cantor 
set each time by a factor of 3 or one third. 

 Similarly, we can explore the behavior of the Koch Curve created by Helge 
von Koch. To create the Koch Curve, you start out with a line segment of with 
length of one unit. Instead of removing the middle-thirds of the line segment as 
you do in the Cantor Set, you actually add two segments of length one third of the 
original line. Another way to think about this is that you take the middle third of 
the original line segment and replace it with the top part of an equilateral triangle. 
This process is iterated over and over again to produce more intricate geometric 
design. You can clearly see that through the various iterations of the Koch Curve, 
since you are adding line segments of  (!

!
)! during each iteration, the curve will get 

longer and longer over time.   
One interesting result we can show is that although the Koch Curve has 

infinite length, the Koch Snowflake encompasses an area that is finite. The Koch 
Snowflake is a variation of the Koch Curve (Figure 2). We first start out by finding 
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the area of an equilateral triangle, given to us by the formula A = !
!
𝑠!.  When 

there are no iterations, we obtain the area of the original triangle which is given to 
us by !

!
𝑠!, then for the first iteration, each side of the three new triangles is cut 

into thirds, so we add on 3 !
!
(!
!
)! to the area previously obtained, and continue the 

process. Notice, there is a pattern regarding the new triangles added on to base 
triangle, 3, 12, 48, ... = 3* 4!!!. Written out, the expanded area looks like: 

 
!
!
𝑠! + 3 !

!
(!
!
)!+ 12 !

!
(!
!
)! + 48 !

!
( !
!"
)! +... = !

!
  𝑠!(1 + !

!
+ !∗!

!!
+!∗!

!

!!
+   …)  

= !
!
  𝑠!( 1+    !∗  !!!!

!!
!
!!! ) . 

Now using the results from Calculus, we have a geometric series that converges to 
!
!!!

=
!
!

!!!!
=

!
!
!
!
= !

!
  and since we shifted the series, 1 + !

!
  =  !

!
.   This implies that 

the area for the Koch Snowflake, whose construction begins with a triangle with 
side length s is equal to    !

!
  𝑠! !

!
=    ! !

!
  𝑠!, has a finite area (Riddle, “Area of the 

Koch Snowflake”). We check the Hausdorff Dimension to verify that the Koch 
Curve is a fractal: there are four self-similar pieces after the first iteration and the 
curve shrinks by a factor of one third or 3, 𝑑 =    !" !

!" !
= 1.26,  a fractional dimension!  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Koch Snowflake 
 
Another famous example of a fractal is known as Sierpiński's Triangle created by 
Wacław Sierpiński. In order to construct the fractal, first create a equilateral 
triangle. Then after identifying the midpoints of each side, connect those points to 
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make another triangle and leave this triangle unshaded while shading in the other 
triangles that are formed. Then iterate the process a few times, always leaving the 
middle triangle in each larger triangle unshaded. 
 Notice, after the first iteration, there are four triangles, but one triangle of 
half-scale, or, an area of one-fourth the original triangle, is unshaded or removed. 
After the second iteration, there are three additional triangles at one-fourth scale, or 
one-sixteenth the area of the original triangle being removed (Figure 3), After the 
nth iteration, triangles of !

!

!
 area will be removed; in other words, the size of the 

triangles being removed is getting smaller and smaller, eventually reaching an area 
of zero as n approaches infinity. You should also notice that there is a pattern with 
the numbers of triangles being removed from the original triangle: 1, 3, 9, 27... 3! 
triangles will be removed upon n iterations. It appears that if this pattern continues, 
we will have an infinite number of triangles in a finite region, supporting the idea 
that this is an example of a fractal.   

Combining the observations we have just made, we can create a geometric 
series that describes the area removed from the original triangle: 

 
 !
!

   !
!

!
∗   3! = !

!
!!

!!
∗   3! = !

!
!
!!
∗ 3! =    !

!
!!

!!
!
𝑖!!

!
𝑖!!   !

𝑖!!
!
𝑖!!  

 
                                    = !

!
!
!

!
!
𝑖!!  (Crilly, Earnshaw, Jones, 14).  

 
Similar to the argument for the Cantor set, we can use results from Calculus to 

find where this geometric series will converge: !
!!!

  =   
!
!

!!!!  
=

!
!
!
!
=   1.    This 

suggests the unshaded regions will eventually take over the space of the entire 
triangle over time. Finally, to absolutely make certain the Sierpiński triangle is a 
fractal, we need to identify the dimension. Using the Hausdorff Dimension 
definition, we see that there are three self-similar pieces of the triangle after the 
first iteration with a magnification scale of two (half scale). This gives us a 
fractional dimension of  !" !

!" !
 = 1.58, supporting our argument regarding the fractal 

behavior of this geometric structure (Devaney, “The Sierpiński Triangle”).  
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                              Figure 3 – Sierpiński’s Triangle 

 
 Our next exploration of fractal geometry will involve discussion of the Julia 
and Mandelbrot sets. Both sets exist within the realm of the complex plane, whose 
subset is the real number line. Complex numbers are defined as z = a+bi, where a 
is a real number and the b is the imaginary component. The lower case i is notation 
for the square root of negative one, a number that does not exist in the set of real 
numbers. You can visualize a complex number on an xy-coordinate plane, where 
the x-coordinate represents the real number and the y-coordinate represents the 
imaginary component. The Mandelbrot Set is created by the rule: 𝑧!!!   → 𝑧!! + 𝑐, 
where 𝑧! is a complex number, c is a complex number and 𝑧!!! represents the 
iterated complex number. In order to use this formula, you take  𝑧!,   square the 
number and add c to it. This creates a new complex number, 𝑧!. You then iterate 
the process n-number of times. Adding the complex number, c, to your original 
complex number, 𝑧!, allows us to create different fractal sets. As noted above, each 
complex number can be plotted as a point so this deterministic rule generates many 
points in the plane after a few iterations. If you iterate this process, you will find 
that the new points either diverge to infinity or remain bounded for all time. The 
Julia Set is actually the boundary between the elements in the orbit that remain 
bounded and those that diverge to infinity. The Julia set can be created by iterating 
points using the same rule as the Mandelbrot set:  𝑧!!!   = 𝑧!! + 𝑐. The Julia set is 
the set of starting values that remain bounded under iteration for a fixed value of c; 
the Mandelbrot set is the set of values of c for which the iteration remains bounded 
when starting at 0 (Crilly, Earnshaw, Jones, 22-23).   
 Computer models gave Mandelbrot, and later mathematicians, the ability to 
create rich visual representations of both sets. First, we will discuss how the 
computer can be used to generate Julia sets and then Mandelbrot sets. The 
computer recognizes each iteration of the rule, 𝑧!!!   → 𝑧!! + 𝑐, as a point or pixel 
and uses the distance formula to determine if the distance between the point and 
the origin is greater than or less than some pre-specified number. If the distance is 
larger than the pre-specified number, the point is outside the Julia set for that c 
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value. Similarly, if the distance is smaller than the pre-specified number, the point 
is inside the Julia set for that c value.  
             Computers have typically been programmed to produce different colors 
depending on the distances the iterated points are from the origin. Other color 
effects, also known as escape value, or how many iterations it took to end up 
outside a given distance from the origin, can produce even more visual effects. The 
c value used for calculations of the Julia set, will give your visual representation 
various forms. This gives us some qualitative support that this mathematical 
structure has chaotic properties. Similarly, the c value also determines if the Julia 
set is connected or not. A Julia set is connected if you can draw a line (or curve) 
between any two points in the set with the line remaining contained within the set. 
A Julia set is considered disconnected when you cannot do this; visually it appears 
to form a “dust” when the Julia set is disconnected. The Mandelbrot set is formed 
when the Julia set is connected (Crilly, Earnshaw, Jones, 22-23).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Mandelbrot Set 
     
 In 1984, Mathematician Mitsuhiro Shishikura of the Tokyo Institute of 
Technology and the State University of New York at Stony Brook, proved that the 
boundary of the Mandelbrot set has dimension two using a proof involving the 
concept of bifurcation of parabolic periodic points (Mandelbrot, 111). A 
bifurcation occurs at a parameter value at which some variation induces dramatic 
changes within the dynamical system. An important idea used in the proof was that 
forming a union of all the connected Julia Sets could create Mandelbrot sets. Each 
connected Julia set represents a point in the Mandelbrot set. Shishikura shows the 
dimension of the Mandelbrot set is related to the dimension of the Julia sets that 
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make it up. As the dimension of the Julia sets increases, so does the dimension of 
the Mandelbrot set, eventually reaching dimension two (Brown, “Mandelbrot Set is 
as complicated as it could be”).   
 
Applications of Fractals  
 
Our exploration of the mathematics behind fractals has helped prepare the way for 
the second half of our journey: applications of fractals to the real world. You may 
be wondering how this knowledge of fractals could be useful to STEM 
professionals? Fractals have been useful in helping quantify and explain Brownian 
motion, applications in biology, the stock market, and used in various technologies. 
We will also explore how secondary mathematics teachers may introduce students 
to fractals, possibly piquing their overall interest in mathematics, and challenging 
some negative cultural stereotypes.  
 
Brownian Motion  

In 1827, Robert Brown discovered that particles of a substance, suspended in 
liquid, would continue to move. This phenomenon would later be known and 
studied as Brownian motion (Gordon, Clarke, Mandelbrot, et al., 11).  In 1908, 
Einstein took his work further when he was studying how particles of a substance 
behave when exposed to heat and suspended in a liquid. He was able to use the 
mathematics of physics to quantify what he observed (kinetic-molecular theory of 
heat) in an experiment. Ultimately the findings of his experiment lead him to 
believe that the behavior of the particles could be predicted to some degree (Lee 
and Hoon, “Brownian Motion”). 
 
 
 
 
 
 
 
 
 
 
 
 
     

Figure 5 – Brownian Motion 
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Brownian motion of a particle, under a microscope, is said to have a 
fractional dimension of two. This is because if you try to predict the movement of 
a particular particle from one location to some other location under the microscope, 
you will find it will most likely have to take a path that fills the entire space before 
reaching the desired “stopping” point. Fractals are involved in fractional Brownian 
motion models; utilizing a random walk (a mathematical representation of the 
random behavior that occurs) and a random iteration algorithm (a deterministic 
rule that produces a “random” pattern), (Lee and Hoon, “Brownian Motion”).  
Fractal geometry and Brownian Motion have helped medical imaging technologists 
make more accurate diagnostic test readings through two primary avenues: 
classification and edge enhancement for ultrasonic liver images. Classification is 
when you use Brownian fractional motion to produce a motion vector that will 
accurately portray the surface of the liver. Edge enhancement is when you take 
each individual pixel from the current image of the liver and calculate its fractional 
dimension in comparison to the whole image. Doing these types of calculations 
helps the medical imaging technologists obtain a better picture of what is 
happening to the liver without an actual physical procedure—reducing unnecessary 
risk and time. Medical researchers Basu, Barba and Chan (“Texture Analysis in 
Cytology Using Fractals”) show how fractional dimension can be used to try to 
distinguish between healthy and malignant cells after noticing that malignant cells 
consistently have a different fractional dimension compared to the healthy cells, 
independent of the type of cell: breast, bronchial, ovarian, and uterine.    

Similarly, Smith, Lange, and Marks (“Fractal methods and results in cellular 
morphology...”) give us insight into the methods in which biologists are using 
mathematical techniques to better understand cell morphology, relating to the 
overall physical characteristics of cells. There exist two major methods of 
calculating fractional dimension of these cells: using length (previously discussed 
with the rulers example in the introduction) or the mass of an object. The mass 
method involves “counting of border pixels in a sampling region, such as disc 
diameters, as a function of the sizes of the sample regions” when given a digital 
representation of the image (Smith, Lange, and Marks, “Fractal methods...”).  The 
computer is then programmed to count the number of pixels contained in these 
round or box regions placed randomly all around the border of the image. 
Typically, the scientists will plot a diagram comparing the log of the pixels within 
each box vs. the log the measuring unit length. The power law describing this 
behavior can be represented mathematically as:  

 
µ(r) = A𝑟𝑑, where µ(r) is the number of pixels (considered mass), r is the 
length of the edge of the boxes or circle diameter, A is a pre-factor (a 
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periodic function whose period is independent of the fractal dimension), D is 
the mass fractional dimension or slope of the plot of log µ(r) vs. log r. 

(Smith, Lange, and Marks, “Fractal methods...”).  
 

 Scientists must also account for lacunarity when trying to use fractals to 
measure the dimensions of cells. Lacunarity is a measure of “non-uniformity of 
structure or the degree of structural variance within an object;” a fractal structure 
that has high lacunarity may have large gaps or holes in its design and/or loses self-
similarity when rotated 90 degrees (Smith, Lange, and Marks, “Fractal 
methods...”). Lacunarity is used to determine the differences in objects with similar 
fractional dimensions (Gould, Vadakkan, Poche, Dickinson, “Multifractal and 
Lacunarity Analysis of Microvascular Morphology and Remodeling”). We 
calculate lacunarity, or L, by calculating the mean and standard deviation of either 
the length or mass of the desired portion of the image, then normalizing those two 
values by dividing the variance by the square of the mean of all box or disc regions 
surveyed in the image (Smith, Lange, and Marks, “Fractal methods...”). A similar 
method to calculate L is dividing the standard deviation by the mean of all boxes or 
discs used, a statistical calculation, also known as the coefficient of variation. 

Multifractals, or “objects whose fractal dimension varies as a function of 
location within in a set (image, frame)” (Smith, Lange, and Marks, “Fractal 
methods...”), were introduced to the author via the context of a biological 
application of fractal dimension but also have connections to the financial stock 
market as well. Previously, Brownian motion models utilizing a random walk and 
statistical distributions have been used to try to make accurate predictions about 
financial systems. However, real world events, such as the global stock market 
crisis of 2008, have revealed the flaws of using Brownian motion modeling 
systems, primarily with the inability to account for large spikes of sales or losses 
within the system within a short period of time (Clarke, Mandelbrot, Stewart, et. 
al., 127).  
 
Financial Market Modeling using Fractals  

Financial systems are good candidates to be modeled by fractals because the 
graphical representations of the rise and fall of stocks look similar on different 
scales when comparing price vs. time (idea of self-similarity). Mathematicians can 
replicate stock market prices using an initiator/generator model. In order to 
construct this model, first start out with the trend line called the initiator. Next,  
pick an interval of the graph you are interested in studying and apply the generator 
to that portion. The generator is a modification much like the replacement 
algorithm in the Koch curve in which each segment is replaced by a modified 
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curve (with four segments in the case of the Koch curve). However, on a different 
portion of the same interval, you will iterate an inverted version of the generator. 
(Imagine the Koch substitution with the added triangular piece not symmetric. On 
one interval, substitute the original, and on the other, substitute the flipped 
version.)  Note: the points on the generator must satisfy the conditions: |dYi|  = 
(dti)1/2 , where |dYi| is the height of some point (typically representing cost of the 
stock in a financial setting) and (dti)1/2 is the distance that point travels on the t axis 
or time (Brennan, “Fractals and Financial Risk”). As you continue to break the 
interval up using more and more initiators, it produces a graph that more accurately 
represents the fluctuations than just a Brownian motion model, primarily due to the 
inverted generator. An even better representation of financial markets lies within a 
multi-fractal initiator/generator model according to Mandelbrot. 
 The multi-fractal model allows the financial analysts to incorporate the fact 
that many people will be buying stocks at different times and at different rates. 
Budinski-Petkovic, Loncarevic, Jasksic and Vrhovac (“Fractal properties of 
financial markets”) demonstrated that the U.S. S&P 500 financial bubbles in 1987, 
2000, and 2007 could be well modeled by the Besicovitch-Ursell (B-U) fractal 
model. A financial bubble is a period of extreme growth (generally exponential in 
nature), sometimes followed by a cataclysmic drop in stock prices, or crash. One 
method econophysicists use to determine trends and make predictions about 
crashes is by fitting the financial data to the log-periodic power law using log-by-
log plots.   
          The researchers in the paper first defined a saw-tooth, or tent map 
f(x) and an another function, g(x), to derive h(x), a B-U function. The B-U function 
is a type of dynamical system that behaves as a fractal since it has a dimension of 
at most two and it has “almost periodicity”- behaving similarly but not exactly the 
same upon each iteration. The researchers used a non-linear fitting algorithm in 
MATLAB to show the B-U function produced relatively small regression errors. 
This gives further support to the argument Mandelbrot had made regarding the use 
of fractals in making financial predictions. 
 
Practical Applications of Fractals in Technology  

Cell phone technology also has benefited from this area of mathematics. In 1999, 
Dwight Jaggard and Douglas Werner found cell phone antennas arranged in a 
fractal pattern were superior in transmitting radio signals over other arrangements 
of the antenna (Stewart, Clark, Mandelbrot, et al., 21). Other researchers, Nathan 
Cohen and Robert Hohfeld, proved antenna designs that had self-similarity and 
symmetry properties (both of which are found in most fractals) performed well at 
various frequencies. Fractals are also useful in computational applications such as 
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image and data compression, as well as data mining (Barnsley, Saupe, and Vrscay, 
2-9).  
 The Internet also behaves in fractal-like ways when looking at how websites, 
search engines, and users interact with each other. The following observations help 
us see some patterns with information transfer across the Internet: 
 

1. As a page’s connectedness (linking of one page to another) increases, traffic 
to the website also increases. 

2. The more traffic that a page generates, the greater its connections to other 
websites. 

3. The greater a page’s rank (where it appears on a search engine search), the 
greater its traffic. 

4. The greater a page’s rank, the greater its connectedness. 
5. As the traffic increases, so does the page’s rank.  
6. Similarly, as the page increases its number of connections, the ranking of the 

page also increases (Stewart, Clark, Mandelbrot, et al., 93).  
 

 Expanding on these observations to form a type of system, you can see that 
the Internet can produce patterns that are self-organizing, and give the overall 
system some sense of predictability and order. Researchers have determined 
patterns of self-organization within hyperlinks, physical connections providing 
access to the internet, the information being exchanged on the internet, in the form 
of files, traffic patterns of data transmitted, and the ways in which people are 
accessing the data (Stewart, Clark, Mandelbrot, et al., 94). Computer scientists use 
a power-law distribution to study these types of phenomenon, similar to the 
techniques of the econophysicists. They discovered that when looking at data 
traffic, regardless of the time scale, self-similarity emerges. Most of the Internet 
traffic is small, checking an email, or browsing a website. However, this trend is 
often interrupted by spikes of high data transfers, such as when someone streams 
video on Netflix. Mathematically, the self-similarity and self-organizing results are 
due to the power law, which states, “the frequency of an item of size x is 
proportional to x-B, where B is a constant” (Stewart, Clark, Mandelbrot, et al., 96). 
The power law, also known as the power law distribution, is called heavy-tailed 
because the right side of the distribution contains more data points than the other 
parts of the distribution (in comparison to the Gaussian or normal distribution).   
 
Fractals in Education  

In our final analysis of applications to the real world, we will discuss how 
secondary mathematics teachers might instruct students about fractals. Although 
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fractals are not directly covered as a Common Core mathematics standard, basic 
concepts regarding fractals can be taught indirectly. Fractal investigations such as 
creating a Sierpiński triangle and identifying particular properties of the model 
relate to students’ abilities to create mathematical models, which is a Common 
Core Standard. Students can explore the idea of fractional dimension through 
observing and quantifying observations they make about natural and man-made 
phenomenon. Students in Algebra and Geometry must understand ideas involving 
proportions and scale that directly relate to the concept of self-similarity.   
          The wide range of applications involving fractals gives opportunities for 
teachers to enhance and widen the scope of their curriculum. One mathematician, 
Dr. Ron Eglash, designed Culturally Situated Design Tools (CSDT, csdt.rpi.edu), 
for teachers and students to engage with fractals. The tools do not overwhelm the 
students with the mathematics behind fractals but do provide teachers with tools 
needed to better explain the mathematical concepts to students. The java applets 
allow the teacher to better differentiate (meet the needs of all the students in the 
classroom) as they can explore the tools at their own speed and the teacher can 
generate extension activities based on the needs of the students.                                                                
          One positive benefit of using the CSDT tools is that students make the 
connection between mathematics and the real world, often times, exploring their 
own culture or the cultures of their peers (Eglash, 222-223). This helps them 
challenge negative stereotypes they have regarding their own mathematics abilities 
as well as their peers, a powerful way to address issues of race and class in the 
mathematics classroom.                                                                                                                                         
             The African Fractals java applet is excellent example of meshing 
theoretical mathematics and making it accessible and relevant for high school 
students. The tool is divided into three sections, Background, Applications, and 
African Culture. In the Background section, students explore some fundamental 
definitions that make up fractal geometry such as recursion, fractal dimension, and 
iterate their own fractal design based on the Koch curve. In applications, students 
investigate and design fractals that come from natural occurring phenomena such 
as non-linear spirals from plants, ferns/algae, iterations with Da Vinci’s tree 
drawing, crystal structures, engineering such as Sierpiński gasket antenna models 
for cell phones, and human structures such as lungs. Finally, in the African Fractals 
section, they explore background regarding fractals in African architecture, art, 
religion, and how they may be used in the future of their society. Students are able 
to design the fractals in-between the historical and cultural discussions, via the java 
applets  (Eglash, “CSDT”). 
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Conclusion  

We have discussed the mathematical roots of fractal geometry, applications to the 
real world, and finally, ways of introducing secondary students to this topic. As 
more research is done utilizing fractals in both pure and applied settings, scientists, 
mathematicians, econophysicists, and computer scientists will find ways to better 
explain phenomena using this tool of mathematics. The future looks bright for 
fractals! 
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