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Abstract

This paper looks at the true on-base ability of a baseball player given their on-base percentage. Unlike a

typical proportion estimation problem where one is able to make an analysis based on knowing the number

of successes and number of trials, this problem only gives us the proportion of successes rounded to three

decimal places. This paper presents two different Bayesian models for finding the highest true on-base

ability. The first Bayesian model considers modeling the distribution of times on-base, plate appearances

and probability of being on-base as a prior distribution and then finding a posterior distribution given

an observed on-base percentage. The second Bayesian model looks into the distribution of hits, walks,

hit-by-pitches, plate appearances and probability of getting on-base and then creating a simulation of

baseball players to see their true ability given a particular on-base percentage. After implementing the two

models, it turns out that the highest reasonable on-base percentage that shows a player’s true ability is

around .4.

I. Introduction

On-base percentage (OBP), defined as the ratio OBP ≡ H+BB+HBP
AB+BB+HBP+SF where H, BB, HBP, AB,

and SF is a player’s hits, walks, hit-by-pitches, at bats and sacrifice flies respectively, is one of the

main statistics used to measure a baseball player’s offensive capacity. According to the bestseller

Moneyball (Lewis 2003), among the different statistics used to measure a player’s hitting ability,

OBP is one of the better measurements.

However, one of the things that can be deceiving about OBP is the true ability of a player

given their OBP. It may be that the player’s OBP was achieved with a very small sample size. For
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example, just by solely looking at the numbers, one would probably assume that a player with

.833 OBP is better than a player with a .398 OBP. However, it is very much possible for a player to

achieve a .833 OBP just by getting on-base 5 out of 6 times and more likely than not, the player

probably got a .833 OBP in this fashion. However, in order for a player to get a .398 OBP, one

would need to bat at least 161 times, which shows a high degree of skill since this percentage is

sustained upon a high amount of batting opportunities.

In this paper, we will look at which OBP’s show the highest amount of true ability p, where

a higher true ability indicating a better player. The way that we will approach this problem

is by turning real world baseball data into models by using random variables and probability

distribution functions of these random variables. These probability density functions would

retain the important details that the real world data contains. A random variable X is a variable

whose possible values are outcomes of random events. We use an uppercase letter X to refer

to the random variable itself and we use a lowercase letter x to refer to the possible value

that the random variable can take on. Probability density functions are real valued functions

fx1,x2,...,xn(x1, x2, ..., xn) such that fx1,x2,...,xn(x1, x2, ..., xn) > 0 for all random variables X1, X2, ..., Xn

and
∫ ∞
−∞

∫ ∞
−∞ ...

∫ ∞
−∞ fx1,x2,...,xn(x1, x2, ..., xn)dx1dx2...dxn = 1. With probability density functions,

we can create conditional distribution functions which are probability density functions with extra

information given with one or more of the variables in the original distribution function. We can

also create marginal distribution functions which are probability density functions that isolate

one of the variables through aggregating the other variables. The models presented will use

conditional distributions and marginal distributions to fit the real world data in an appropriate

way.

Sections 2 and 3 will present two different models to approach the same problem. The goal

is to create such a model that if we made a simulation out of this model, we would obtain fake

data that would be reasonably similar to the real world baseball data. Section 4 will present the

necessary methods to calculate the posterior true ability P given the OBP information as well as

the information that we created with both our models in sections 2 and 3. Section 5 will give

the results of our calculations as well as analyze some of the results’ highlights. All of the major

computations were handled by R, a statistical program. The data that we used was taken from

www.baseballreference.com where we recorded the offensive statistics of non-pitchers who had at
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least one at bat during the 2015 and 2016 seasons (which were the two most recent complete data

available). Players who had at least one at bat for more than one team in a particular season

appear in the data multiple times, once for each team. There were about 700 players who met this

criterion per season so we had about 1400 players’ statistics to work with.

II. The First Proposed Model

The first model will use Bayesian statistics to model the true ability of a player given an OBP

thorough a formula that measures the true ability in relation to information relevant to on-base

percentage. Bayesian statistics studies the probabilities of events occurring given one has relevant

information about the event before making the actual calculation. The probability calculated

without the information is called the prior probability and the probability calculated using the

updated information is called the posterior probability. In this case, we will use plate appearances,

times on base, and on-base percentage as the relevant information and we will use true ability

as the prior/posterior probability. We will use true ability for as a prior probability for building

the model and we will use true ability as a posterior probability for determining which on-base

percentages measure the better players’ offensive skill.

We will aggregate the OBP formula to OBP = times on base
plate appearances where times-on-base = H + BB +

HBP and plate appearances = AB + BB + HBP + SF and find the joint distribution of the random

variables TOB (times-on-base), P (prior true ability), and PA (plate appearances). We first find the

marginal distribution of PA. Then we model the conditional distribution of P given PA. After that,

we model the conditional distribution of TOB given P and PA.

i. Plate Appearances

To model the marginal distribution of PA, we first made histograms of the player plate appearances

totals for the 2015 and 2016 seasons. Figure 1 presents the histograms of the plate appearances for

the 2015 season, 2016 season, and the two seasons combined.

By approximating the histograms with a combination of lines and curves, we created a

probability density function for the plate appearances. The reason that we do this task is to

convert the plate appearances data from a practical histogram model to a theoretical probability

density function model. The probability density function will allow us to make calculations when
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Figure 1: Histogram of Plate Appearances for the 2015, 2016, and Combined seasons respectively

this distribution is combined with the other distributions in the model. Notice that all three

histograms were relatively similar, which allows us to form a density function that will capture

the main properties of each of the histograms. The goal of the density function is to create a

function that will approximate the probability of each plate appearance occurring. While one

could do this by simply counting the frequencies of a plate appearance occurring and dividing

by the number of players, there are a lot of variance with each of the probabilities since the

probabilities would vary a lot from year to year, thus making for an unreliable model. Making

a probability density function using lines and curves will allow us to retain the general pattern

that is observed with the baseball data over the course of multiple seasons, rather than baseball

data just for a particular year. With turning a probability distribution function into a function that

approximates the probabilities of individual plate appearances occurring, we will use the fact that

P(PA = pa) = P(pa ≤ PA < pa + 1). This is reasonable to do since plate appearances are only

integers and partitioning the domain of f(x), which is the real line, into discrete parts allows us to

have the distribution d(pa) to have the domain consisting of integers.

d(pa) ≡
∫ pa+1

pa
f (t)dt (1)

where f is the density function
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f (x) =



0.004779146e−.014285714x + .001013758 if 0 ≤ x < 280

0.00083273 if 280 ≤ x < 600

0.001122375 if 600 ≤ x < 700

−0.00000501319544x + 0.0038100285 if 700 ≤ x < 760

Even though one could theoretically have an unlimited number of plate appearances in a

season, in practice, none of the plate appearances have surpassed 760, so for the sake of this model,

we assume that x < 760.

ii. True Ability

To model the conditional distribution of prior true ability P of a player getting on-base given only

PA and nothing else, we turned to the Beta family of distributions. The Beta distribution is a

probability density function such that X is between 0 and 1 and α and β are greater than 0. With this

distribution, fx(x) = xα−1(1−x)β−1

B(α,β) where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

and Γ(α) = (α− 1)! =
∫ ∞

0 xα−1e−xdx.

Frey (2007) found that one can find the true ability for batting average by modeling the mean of

ability (µ(a)) given at bats and the one of the parameters of variability of ability (c) given at bats.

Then one can set µ = α
α+β and c = α + β since these two parameters are sufficient to create a beta

distribution model. We can do likewise for OBP by substituting at bats with plate appearances.

One can find µ by doing a lowess fit of a plot of on-base percentages versus plate appearances

and creating the equation of the lowess fit line similar to what we did with the plate appearances

model. Figure 2 contains the lowess fit plot. This equation is meant to be an approximation of the

lowess fit in Figure 2.

From this process it follows that

µ(pa) =


0.000261494x + .253448276 if pa ≤ 194

0.000078736x + .288965517 if pa > 194

With finding c, we have to account for the fact that better players play more. As a result of this

fact, the distribution of p for players with a higher number plate appearances will be stochastically

larger than those with a lower number of plate appearances. What Frey (2007) did for finding
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Figure 2: Plot of Plate Appearances vs OBP’s for the 2016 season. The extra line is a lowess fit.

the variability of batting average was to first plot the variability of batting average as a function

of at bats. For at bat bins [290,310), [310,330),...[690,710), he computed the within-bin standard

deviations and plotted them as a function of at bats, thus creating a scatter plot of points. We can

do likewise for finding the true ability for OBP. Once one has made the plot, one can find c by

using the function

var(
tob
pa

) =
1
pa

µ(pa) + (1− 1
pa

)(
cµ(pa)2 + µ(pa)

c + 1
)− µ(pa)2

. This variance function will act as contours on the graph of standard deviations with varying

curves such that every point on a curve will have the same value of c with the locations of the

curves changing as a function of c (i.e., with this function, as c increases or decreases the curve

will go down or up relative to the points on the graph respectively). All we need to do is to find

the curve such that half of the points fall above the curve and half the points fall below it and

mark the curve’s corresponding c value. After doing this procedure, we end up having c being

equal to 625. Figure 3 shows the standard deviation versus plate appearances plot with the middle

curve being best representation the variability in the true ability. At this point, we have established

a relationship between the prior true ability and plate appearances.
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Figure 3: Empirical bin-by-bin standard deviations for OBP. In the top, middle, and bottom curve, c=400, 625 and 900
respectively. We will use c=625 for our model.

iii. Times on Base

Finally, we need to model the distribution of TOB given PA and P. The most natural model for

this would be to see if TOB were distributed as Binomial(pa,p). The binomial distribution B(n, p)

is a probability mass function (probability distribution function for discrete random variables) that

models the number of successes or failures of n independent identical trials where each trial only

has an outcome of a success with probability p or failure with probability 1− p. The probability

mass function for this distribution is fx(x) = (n
x)px(1− p)n−x where (n

x) =
n!

x!(n−x)! and n is an

integer between 0 and n inclusively. In this model, we are trying to see if we are use each plate

appearance as a trial and the prior true ability as the probability of getting on-base since we have

found a model for plate appearances and prior true ability in the earlier sections. Frey (2007)

showed that one can see if hits (h) were Binomial(at bats(a), prior true ability(p)) by selecting

players with at least 300 at bats for the same team for two consecutive years and seeing if

( h1
a1
− h2

a2
)√

p̂(1− p̂)(a−1
1 + a−1

2 )
∼ N(0, 1)

where h1, h2, a1, a2 are the hits and at bats of two consecutive seasons respectively and p̂ =

h1+h2
a1+a2

. The premise behind picking players’ data from two consecutive seasons is the fact that a
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player’s skill isn’t going to change very much over this time frame which makes the trials more

"independent" and "identical". We can do likewise for OBP by substituting a with pa and h with

tob. After carrying out this process by looking at a histogram and calculating the mean and

standard deviation, it turns out that the times on base does follow a binomial distribution. At this

point, we have established a relationship between TOB with P and PA.

iv. Checking the model

After completing our model, we decided to create a simulation of 700 players using the model and

compare its scatter plot of OBP to plate appearances to that of the real data. For each player, we

first found a random value of pa subject to its probability density function, then found a random

value of p using its conditional Beta distribution with the random value of pa, and then found a

random number of tob by picking a random number from it’s corresponding binomial distribution

with the random value of pa and p. Then we computed the OBP for each simulated player using

the random values of pa and tob. Then we made a scatter plot with the players’ OBP and plate

appearances to compare it to the scatter plot of the original data. Figure 4 shows the scatter plots

of the data alongside with the original data. Notice that the simulated data plot is very similar to

that of the real data so this model captures the essence of the baseball data.
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Figure 4: Plate Appearances by OBP Plots. The left-most one is with the 2016 data and the other two are created by
simulation with the first model.
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III. The Second Proposed Model

The second model will use a more specific model to better fit the OBP data and will use a

simulation to find the true ability given the information presented in the model. We will look

at each of the numerator components of OBP and find the joint distribution of the variables H,

BB, HBP, P, and PA. We try to find the marginal distribution of PA, conditional distributions of

PH ,PBB, and PHBP given PA and then the conditional distribution of H, BB, and HBP given PH ,

PBB, PHBP and PA.

i. Plate Appearances

In this model, the model for PA is the exact same model as the model used for PA in section 2.1 so

we omit the details.

ii. True Ability

Unlike section 2.2 where we only needed to find the prior true ability of a player getting on-base

given only PA, in this model, we need to find the prior true abilities for a player to get a hit

(PH), walk (PBB), hit-by-pitch (PHBP), and out (1− PH − PBB − PHBP) given only PA. Since we are

looking at probabilities such that the sum of probabilities of the four components adds up to 1

(reaching on-base by fielders’ choice or by an error is counted as an out according to the definition

of on-base percentage), the most natural distribution to turn to would be the Dirichlet distribution.

The Dirichlet distribution is the multi-variable equivalent of the Beta distribution where n = 2 of

the Dirichlet distribution is the Beta distribution. The probability density function of the Dirichlet

distribution is fx1,x2,...,xn(x1, x2, ..., xn) = 1
B(α1,α2,...,αn)

Πn
i=1xαi−1

i where B(α1, α2, ..., αn) =
Πn

i=1Γ(αi)

Γ(Σn
i=1αi)

We can use the same process of finding the distribution as in Section 2.2 by finding the means

of the different abilities and the variability of the abilities. In this case, we set µ1 = α1
α1+α2+α3+α4

,

µ2 = α2
α1+α2+α3+α4

, µ3 = α3
α1+α2+α3+α4

, and µ4 = 1− µ1 − µ2 − µ3 where µ1,µ2,µ3, and µ4 are the

means corresponding to hits, walks, hit-by-pitches and outs respectively. In this case, c will be

equal to α1 + α2 + α3 + α4. Using the same process as what we used in section 2.2, it follows that
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µ1(pa) =


0.000125969x + .187209302 if pa ≤ 230

0.000070543x + .2 if pa > 230

µ2(pa) =


0.000217241x + .04137931 if pa ≤ 167

0.000015517x + .075172414 if pa > 167

µ3(pa) =


0.000030864x if pa ≤ 232

0.000003292x + .006419753 if pa > 232

In this case, µ4 is omitted since it is just a function of the other 3 functions and carries little

benefit in the model. Since the process of finding c is the exact same process as in section 2.2, we

omit the details with the process and say that we will use c = 625 as was used in the previous

model. Now we have a connection between the prior true ability with plate appearances.

iii. Hits, Walks, Hit-By-Pitches

Finally, we need to model the distribution of hits (H), walks (BB), and hit-by-pitches (HBP) given

PA, PH , PBB, and PHBP. Since we are modeling plate appearances as independent events that

only lead to outcomes H, BB, HBP, and Outs, the most natural distribution to turn to would be

the multinomial distribution. The multinomial distribution is the multi-variable analogue of the

binomial distribution. Like the binomial distribution, the multinomial distribution measures the

outcomes of n identical, independent trials. However, unlike the binomial distribution where

each trial only has outcomes success and failure with probabilities p and 1− p respectively, the

multinomial distribution trials have outcomes x1 with probability p1, x2 with probability p2,...,xk

with probability pk where xi’s are integers with Σk
i=1xi = n and pi’s are probabilities such that

Σk
i=1 pi = 1. The probability mass function for this distribution is n!

x1!x2!...xk ! px1
1 p2x2...pxk

k . Notice

that for k = 2, the multinomial distribution is the binomial distribution. However, in order for H,

BB and HBP to be modeled this way, we need to have hits to be modeled as

( h1
pa1
− h2

pa2
)√

p̂h(1− p̂h)(pa−1
1 + pa−1

2 )
∼ N(0, 1)
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where p̂h = h1+h2
pa1+pa2

. Notice that this modeled function is analogous to the one in section 2.3. We

would also need walks and hit-by-pitches to be verified in a similar fashion. The way that one

verifies this is the same as the technique used in the first model so we omit the details. After

carrying out this process by looking at the histograms of H, BB, and HBP and calculating their

means and standard deviations, it turns out that each of the formulas are normal, which means

that hits, walks and hit-by-pitches follows as a multinomial distribution.

iv. Checking the Model

After completing our model, we decided to create a simulation of 700 players using the model and

compare its scatter plot of OBP to plate appearances to that of the real data. For each player, we

first found pa using its probability density function, then found a random value of ph, pbb, phbp,

and pout using the Dirichlet distribution, and then found the number of hits, walks, hit-by-pitches

and outs by picking a random number from it’s corresponding multinomial distribution. We then

computed each simulated player’s OBP by the formula hits+walks+hit-by-pitches
plate appearances and made a scatter

plot similar to that in the first model. Figure 5 shows the scatter plots of the data alongside with

the real data. Notice again that the simulated data plot is very similar to that of the real data so

this model captures the essence of the baseball data.
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Figure 5: Plate Appearances by OBP Plots. The left-most one is with the 2016 data and the other two are created by
simulation with the second model.
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IV. Finding the Posterior Distribution

i. Using the First Model

In order to find the posterior true ability P based on OBP alone, we need to find the true ability

given OBP. We can use the fact that P(prior true ability) ∼ Beta(α, β) and X|p(prior true ability) ∼

Binomial(n, p) =⇒ P(posterior true ability)|x ∼ Beta(α + x, β + n− x) where A ∼ b means that

random variable A has distribution b. Frey (2007) found that for batting averages, one can find

the posterior distribution conditional on a given batting average by listing all of the ways (a1,h1),

(a2,h2),...(ak,hk) a batting average b can occur and summing a mixture of their corresponding

distributions, which, in this case, each one is a Beta distribution. Frey (2007) also showed that the

posterior p given a batting average b is the mixture

K

∑
i=1

(
P(hi hits and ai at bats)

∑K
j=1 P(hj hits and aj at bats)

)
× Beta(cµ(ai) + hi, c(1− µ(ai)) + ai − hi) (2)

where

P(hi hits and ai at bats) = d(a)

(
Γ(a + 1)Γ(c)Γ(h + cµ(a))Γ(a− h + c(1− µ(a)))

Γ(h + 1)Γ(a + 1− h)Γ(cµ(a))Γ(c(1− µ(a)))Γ(a + c)

)
. (3)

In equation (3), d(a) is defined in equation (1). We can do the same thing with OBP by

substituting h with tob and a with pa. Due to the similarity the formula is retained. Using the

formula, we can find the posterior p for each OBP. However, we only considered the OBP of

those such that P(OBP = obp) > 1
10,000,000 since other OBP’s are pretty much impossible to see in

practice.

ii. Using the Second Model

Unfortunately, with the second model, one cannot use the same Bayesian techniques for the second

model due to too much storage needed to accomplish this task. Doing this kind of calculation

would require a 14 billion entry matrix and unfortunately R can only hold 2 billion at most.

Instead, we simulated some fake baseball data using the second model similar to the simulation

used to test the model. We made 10,000,000 fake players each with their own h, bb, hbp, pa, ph,
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pbb, and phbp, similar to how we checked the second model by simulating fake players in section

3.4. We then computed each player’s OBP, and summed each player’s ph, pbb, and phbp to find

each player’s overall true ability. We then did an aggregate mean on the true ability by OBP. This

will give us the posterior mean P for the players. One thing to take into account with using this

model is that we will need to watch for simulation errors. However with 10,000,000 players being

simulated, the issue of simulation error is probably negligible since the sample size is really high.

V. Results

i. Using the First Model

Table 1 gives the posterior true abilities and posterior standard deviations for the corresponding

top ten OBP’s and the corresponding bottom ten OBP’s using the first model. The posterior true

ability tells us what the real value of a player’s probability of getting on-base given the player’s

documented OBP. One interesting observation is that the top 10 posterior true abilities had OBP’s

that were all above .35 with posterior true abilities around .34-.36 and the bottom 10 posterior true

abilities had OBP’s that were less than .1 with posterior true abilities around .25. This observation

makes intuitive sense since even without applying the analysis of this paper, among the laypersons,

a player with an OBP of more than .35 is considered to be talented and a player with an OBP of

less than .1 would be considered to be terrible. Another observation to make is that the top 10

posterior true abilities needed at least 100 plate appearances in order for such values to exist. This

also lines up with intuition as better players will have more opportunities to contribute offensively.

One more interesting thing to notice is that the bottom 10 posterior true abilities require more

than 100 plate appearances which suggests that only having a high number of plate appearances

isn’t sufficient for being a good player. An interesting comparison to make is with Frey (2007)’s

data for batting average. While his top 10 posterior true abilities contained a similar pattern of

having batting averages above .3, his bottom 10 posterior true abilities only contained batting

averages that can be achieved with a low number of at bats (Frey (2007) lacks low batting averages

for his bottom 10 posterior true abilities other than .000.). The posterior standard deviations show

how much a player’s posterior true ability can vary. The fact that the posterior deviations are

between .015 and .04 for the top 10 OBP’s suggest that there is a reasonable amount of variation

with posterior true abilities.
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OBP Posterior True Ability P Posterior SD for P OBP Posterior True Ability P Posterior SD for P
0.428 0.362 0.031 0.022 0.249 0.019
0.401 0.356 0.026 0.023 0.249 0.019
0.399 0.355 0.026 0.024 0.249 0.019
0.445 0.349 0.038 0.025 0.250 0.019
0.416 0.347 0.038 0.039 0.250 0.019
0.384 0.346 0.029 0.026 0.250 0.019
0.398 0.345 0.033 0.041 0.250 0.019
0.402 0.345 0.035 0.027 0.250 0.019
0.374 0.343 0.026 0.028 0.250 0.019
0.376 0.343 0.027 0.052 0.250 0.019

Table 1: OBP corresponding to the highest and lowest posterior true abilities p. We only consider OBP with at least a
one in 10,000,000 chance of occurring.

ii. Using the Second Model

Table 2 gives posterior true abilities, posterior standard deviations, and average plate appearances

for the corresponding top ten OBP’s and the corresponding bottom ten OBP’s using the second

model (We were able to find the posterior mean for plate appearances with this model). A similar

analysis regarding the usage of the first model can be said with the second model since the general

patterns of both tables are relatively similar (i.e., the top 10 OBP’s are above .35 and the bottom 10

OBP’s are mostly below .1 as well as the relatively similar posterior standard deviations). Unlike

the posterior true abilities in the first model, the second model have lower posterior true abilities

for the bottom 10 OBP. Another thing to notice is that the average plate appearances for the

top 10 OBP’s are around 400 to 500 while the bottom ten OBP’s are less than 65. One standout

contrast though is that the top OBP’s for both models are similar while the bottom ten OBP’s

are different. A standout figure that appears with this model is the OBP value of .889. Though

this value is significantly greater than .35, it can easily be achieved with 8 times-on-base out of 9

plate appearances which does not really indicate the batter is a good player. This example shows

that only having a high valued OBP isn’t sufficient enough for determining a player’s offensive

capacities.

VI. Conclusion

When it comes to finding the best batters, it isn’t always the case that a batter with a higher OBP

alone implies a better hitting. We need a player to have both a high number of plate appearances
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OBP P SD for P Posterior Mean for PA OBP P SD for P Posterior Mean for PA
0.445 0.366 0.035 449.5 0.052 0.217 0.000 58.0
0.428 0.365 0.029 493.9 0.022 0.219 0.017 45.5
0.401 0.357 0.024 519.6 0.016 0.221 0.000 61.0
0.399 0.357 0.024 521.4 0.889 0.225 0.006 9.0
0.416 0.353 0.036 458.9 0.026 0.226 0.014 38.4
0.402 0.350 0.033 474.3 0.028 0.226 0.021 36.0
0.398 0.350 0.031 481.4 0.058 0.228 0.016 54.1
0.384 0.348 0.027 503.7 0.024 0.228 0.017 41.6
0.403 0.344 0.040 446.5 0.000 0.229 0.017 4.1
0.376 0.344 0.025 500.0 0.047 0.229 0.015 43.0

Table 2: OBP corresponding to the highest and lowest posterior true abilities p.

and a high OBP. Both of the models used show that the top OBP’s in terms of posterior true

abilities are around the .4 values, which is a reasonable conclusion to make. However, one of

strange results is that the bottom 10 OBP’s for both models yields values that require a reasonably

high number of plate appearances as well. This result is counter-intuitive to the notion that worse

players tend to receive less opportunities to go to the plate as they are less reliable for contributing

to the team’s offense. It also runs a bit contradictory to Frey (2007)’s results on the optimal batting

average. Nevertheless, this analysis shows us that we can make a model out of limited real data

and apply simulations along with Bayesian analysis to make a practical conclusion. With knowing

only a subset of the full baseball data, we can conclude that a good baseball player will have

an OBP of .445, .421, .401 and other values that are high in magnitude and are only achievable

through a high number of plate appearances.
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