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Introduction 
 
Traffic congestion in urban areas has been an issue since the beginning of the 20th 
century, and it continues to be one of the most persistent problems facing urban 
planners. The phenomenon has been extensively studied and several models have 
been used to explain where, when, and how vehicles move through a network of 
roads. Limited access highways changed how vehicles flowed in and around cities 
and across the country. They allow vehicles to maintain constant speeds between 
exits and are partially responsible for the expansion of cities (Rephann & Isserman, 
1994). 

The challenge in studying a road system populated with vehicles is that the 
number of parts interacting at the same time is very large. Each individual vehicle 
in the system must be considered on its own and also as a part of the system as a 
whole. In some ways, this system acts like a complex economy; each vehicle acts 
to maximize its utility by minimizing travel time, avoiding hazards, and seeking 
the least troublesome route to its destination. Each constituent part of the system 
has some effect on all the other parts in the system. 

This paper looks at the issue of traffic congestion around cities and 
demonstrates a model that predicts areas of traffic congestion based on census data 
along with statewide traffic data. The model utilizes a Markov chain process in 
order to analyze the origin-destination paths of vehicles in a network system. This 
method is applied to the Greater Philadelphia Region and evaluated for its 
predictive value. The implications of this model and possible extensions are also 
considered. 
 
Review of Traffic Models 
 
Microscopic Models 
Microscopic models focus on the individual interactions between vehicles and the 
roadway. Vehicles follow specific rules, outlined in the model, that govern their 



	
  

movement in the system (Velasco & Saayedra, 2008). These rules relate values 
such as velocity, distance to nearby vehicles, and time. One common microscopic 
traffic model is “follow-the-leader”, which utilizes a dynamical equation or system 
of differential equations relating the motion of the (n+1)th vehicle following the 
nth vehicle in a single lane (Gazis, Herman, & Rothery, 1961): 
 

𝑥!!! 𝑡 + 𝑇 =   𝜆 𝑥! 𝑡 − 𝑥!!! 𝑡 , 
 
where xn is the position of the nth vehicle, T is the time lag of response to the 
stimulus, λ  is the sensitivity, and the dots denote differentiation with respect to 
time t. 

Nagel and Schreckenberg developed a cellular automata model that dictates 
rules for traffic movements. These rules account for how vehicles accelerate with 
relation to each other and move along the roadway. The product of the model is a 
time vs. space (road) plot which tracks how dense traffic is at each point in the 
road during a time interval. This plot shows how congestion patterns can travel in 
both time and space (Nagal & Schreckenberg, 1992). 

A model put forth by Indrei utilizes Markov chains to construct a theoretical 
traffic system in a real space ℜ  (Indrei, 2006). An object located in a particular 
element (i, j) of the configuration matrix transitions to a new location in discrete 
time. Each element of this matrix represents a position on the roadway. Vehicle 
movements are defined as a transition where rows represent highway lanes and 
columns represent length of the highway segments: 

 
𝑖, 𝑗 ⋈ 𝑓 𝑖 , 𝑗 + 𝜎 𝑜𝑏𝑗𝑒𝑐𝑡 , 

 
The symbol ⋈ represents a natural join between elements of two matrices, A0 and 
A1. This relation describes how an object in the (i, j)th slot in a matrix A0 ∈  ℜ  will 
end up in the (f(i), j + σ(object))th slot of another matrix A1 ∈  ℜ  during one time 
step, where 
 

𝜎 𝑜𝑏𝑗𝑒𝑐𝑡 =

1,                  with  probability  𝑝  
2,                  with  probability  𝑞
3, with  probability  𝑟

𝑝 + 𝑞 + 𝑟 = 1

 

and 
𝑓: 𝑖 ↦ {𝑖, 𝑖 + 1, 𝑖 − 1} 

 
 



	
  

 
Mesoscopic Models 
Another category of traffic models, called mesoscopic or kinetic traffic models, 
examines vehicular movements as parts of a larger scale mechanism. Headway 
distribution models focus on how much time passes between two successive 
vehicles. The time between vehicles (headway) is described by a random variable 
with either a single distribution or mix of different distributions. Some of these 
distributions are normal, gamma, and exponential (Zhang, Wang, Wei, & Chen, 
2007). 

Cluster models are characterized by groups of vehicles that all exhibit the 
same property, such as velocity. This clustering effect may be due to how a 
roadway narrows to fewer lanes or other factors such as weather. The size of each 
cluster, which determines how vehicles will flow on a highway, is dynamic and 
can grow or diminish over time (Hoogendoorn & Bovy, 2001). 
The gas-kinetic model of traffic flow comes from statistical mechanics and models 
vehicles as particles in a traffic flow. Prigogine and Andrews developed this model 
based on the Boltzmann-Maxwell equation that models the velocity of ideal gas 
particles. The distribution of velocities f(x,v,t), where x is position on road, v is 
velocity, and t is time (Prigogine & Andrews, 1960). This distribution function is 
described as: 
 

𝜕𝑓
𝜕𝑡
+ 𝑣

𝜕𝑓
𝜕𝑥

=
𝜕𝑓
𝜕𝑡!"#

+
𝜕𝑓
𝜕𝑡!"##

 

 
where df/dtrel is the relaxation term (reflected by a desire to return to the ideal 
distribution) and df/dtcoll is the ‘collision’ term, which in this case refers to the 
interaction between vehicles ahead slowing down the ones behind. 
 
Macroscopic Models 
Macroscopic models describe averaged quantities in traffic such as density, 
average velocity, and velocity variance. Individual vehicles are not considered, but 
rather their aggregate behavior is examined in order to understand the overall 
traffic flow on a roadway. Lighthill and Whitham developed a theory that at any 
point of the road the flow q (vehicles per hour) is a function of the concentration k 
(vehicles per mile), and that the quantity in a small element of length (dk) changes 
at a rate equal to the difference between inflow and outflow (dq) (Lighthill & 
Whitham, 1955): 

𝜕𝑘
𝜕𝑡
+
𝜕𝑞
𝜕𝑥

= 0 
 



	
  

This partial differential equation describes a phenomenon from physics called a 
kinematic wave. The dynamics of these waves describe how traffic jams can occur 
at one point on a road and travel backwards through the traffic flow. A model built 
upon the Lighthill/Whitham model that uses a system of partial differential 
equations was proposed by Harold J. Payne and includes a convection, relaxation, 
and anticipation term in the system (Hoogendoorn & Bovy, 2001): 
 

𝑉 𝑥 𝑡 + 𝑇 , 𝑡 + 𝑇 = 𝑉!(𝑟 𝑥 + 𝐷, 𝑡 ), 
 
where x(t) is the location of the vehicle at time t, V(x,t) is velocity at x and t, Ve is 
the equilibrium velocity, r(x,t) is the density, T is reaction time and D is gross-
distance headway with respect to the preceding vehicle. The equation describes 
how drivers will adjust their velocity to an equilibrium velocity, which is affected 
by the traffic density. The left and right sides of this equation can be expanded and 
combined to form a single equation: 
 

𝜕!𝑉 + 𝑉𝜕!𝑉 =
𝑉! 𝑟 − 𝑉

𝑇
−

𝑐!!

𝑟
𝜕!𝑟, 

 
where c0

2 = ξ/T > 0 is the anticipation constant, and ξ = -dVe/dr is the decrease in 
the equilibrium velocity with increasing density. Other single and multi-equation 
models exist that extend the Lighthill/Whitham and Payne models to particular 
situations (Hoogendoorn & Bovy, 2001). 

Two methods for describing traffic flow outlined by Sasaki and Myojin 
involve the use of Markov chains (Sasaki & Myojin, 1968). The first is the 
branching probability matrix method, in which the highway is divided into m 
sections. A volume of traffic over each section of highway is denoted xi , and a row 
vector of volumes can be constructed X = (x1, x2, … , xm). Inflows and outflows are 
also denoted within a row vector; Ui = inflow through ramp i (i = 1,2,3,…k), Vj = 
outflow through ramp j (j = 1,2,3,…r), and k = the number of on-ramps and r = the 
number of off-ramps. The branching probability matrix is written in canonical 
form: 

 

𝑃 =
𝐼 0 0
𝑅! 0 𝑄!
𝑅! 0 𝑄!

 

where   
 

R1= the probability of an inflow from on-ramp i to off-ramp 



	
  

R2= the branching probability of traffic flow from section i to off-ramp j 
Q1= the probability of an inflow from on-ramp i to section j 
Q2= the branching probability of traffic flow from section i to section j 
 

Traffic flows over sections are given by: 
 

𝑋 = 𝑢𝑄!(𝐼 − 𝑄!)!! 
 
and outflows through ramps are given by: 
 

𝑣 = 𝑢 𝑅! + 𝑄!(𝐼 − 𝑄!)!!𝑅!  
 

The second method described by Sasaki and Myojin is the route matrix 
method. If we are given the distribution of trips between on-ramps and off-ramps, 
we can form a route matrix, which describes how a vehicle entering at on-ramp i 
will travel to off-ramp j. This will be an (r × m) matrix in which the entry rim is 
equal to 1 if the route from on-ramp i to off-ramp j includes section m, and equal to 
0 otherwise. Each on-ramp will have its own matrix Ri. The trip distributions can 
be denoted by row vector pi = (pi1,pi2,…,pir), where pij = transition probability of a 
trip from on-ramp i to off-ramp j. The overall expected traffic flow over the traffic 
network is: 
 

𝑄 =

𝑝!𝑅!
𝑝!𝑅!
⋮

𝑝!𝑅!

= 𝑄!" , (𝑘×𝑚) 

 
and gross actual traffic flow: 
 

𝑋 = 𝑢𝑄 
 

Another article describes this process in detail and applies it to a 
hypothetical traffic network (Crisostomi, Kirkland, Schlote, & Shorten, 2010). The 
literature refers to this approach as the origin-destination (OD) matrix method. The 
estimation of these matrices by various means is the subject of several articles 
(Van Zuylen & Willumsen, 1980) (Perrakis, Karlis, Cools, Janssens, & Wets, 
2012) (Youngblom, 2013). 
 
III. Model 
 



	
  

The purpose of this model is to predict when and where heavy traffic is most likely 
to occur in a highway network. Since the focus of this model is on particular 
segments of highway rather than individual vehicles or traffic flow, it would need 
to be macroscopic in its level of detail. Sasaki and Myojin’s model from the 
previous section provides a good foundation on which to build this model since 
their model’s level of focus is on highway segments. But we should first reexamine 
the situation we are trying to model. 

 
Representing a Highway System as a Matrix 
A road network can be looked at as a system of exits connected by segments of 
highway that can be represented by a directed graph. The vertices of the graph 
represent exits and edges represent highway segments: 

 

 
 

For this example, there are 7 exits connected by highway segments. An adjacency 
matrix A can be formed to describe this system: 
 

𝐀 =

0 1 0
1 0 1
0 1 0

0 0 0
0 1 0
1 1 0

1
1
0

0 0 1
0 1 1
0
1

0
1

0
0

0 0 1
0 0 1
1
0

1
0

0
1

0
0
1
0

 

 
A new matrix D representing the distance between exits in miles can be defined by 
inserting the distances between exits instead of 1s, replacing the 0s that represent 
unconnected exits with a very large number to simulate an infinite distance, and 
leaving the 0s in place for elements where i = j: 
 



	
  

𝐃 =

0 3 ∞
3 0 3
∞ 3 0

∞ ∞ ∞
∞ 2 ∞
2 3 ∞

4
5
∞

∞ ∞ 2
∞ 2 3
∞
4

∞
5

∞
∞

0 ∞ 2
∞ 0 1
2
∞

1
∞

0
1

∞
∞
1
0

 

 
The matrix D describes the relevant information about how the exits are connected 
to each other, but we also need to know how many lanes of traffic there are on 
each segment of highway. A matrix to describe the number of lanes between exits 
L is defined, where elements representing segments that are not connected are 
given a value of -1 as a placeholder (avoiding possible division by zero later in the 
model): 
 

𝐋 =

−1 2 −1
2 −1 2
−1 2 −1

−1 −1 −1
−1 3 −1
2 3 −1

2
3
−1

−1 −1 2
−1 3 3
−1
2

−1
3

−1
−1

−1 −1 2
−1 −1 1
2
−1

1
−1

−1
3

−1
−1
3
−1

 

 
The two matrices D and L together describe all the important information about the 
geometry of the highway system. 
 
Determining Populations 
 
Now that the road network is established, we can consider how vehicles travel on 
the system. Assume that at any time t there are a particular number of vehicles in 
the area of each exit. These populations can be represented by a row vector q = (q1, 
q2, …, qm), where qi represents the population at exit i. So qt = (q1t, q2t, …, qmt) 
represents the populations at each exit at time t. 

For this model, time takes on discrete values of one-hour increments, so for 
each hour a new population must be determined. This new population consists of 
vehicles that came from another exit as well as vehicles that did not travel away 
from their exit. First, consider the vehicles that come from another exit. Let the exit 
traveled from be ei and the exit traveled toward be ej. Then there is a probability 
that a vehicle leaving ei goes to ej which can be expressed as pij. A matrix P can be 
formed from these probabilities: 

 



	
  

𝐏 =

𝑝!,! 𝑝!,! ⋯ 𝑝!,!
𝑝!,! ⋱ ⋯ ⋮
⋮

𝑝!,!
⋮
⋯

⋱
⋯

⋮
𝑝!,!

 

 
This matrix represents a transition matrix that states the probabilities associated 
with traveling from exit i to exit j. Each row of this matrix will be stochastic (sum 
to 1). 

Another probability representing the relative volume of traffic on the 
highway network during a particular hour must also be defined. Let v(t) be a 
function representing the relative volume of traffic using the network during time 
interval t, then the number of vehicles leaving any particular exit during time 
interval t is given by v(t)qi, and the total number of vehicles traveling to exit j is 
given by: 

𝑣 𝑡 𝑞!𝑝!,! + 𝑣 𝑡 𝑞!𝑝!,! + 𝑣 𝑡 𝑞!𝑝!,! +   ⋯   + 𝑣 𝑡 𝑞!𝑝!,! = 𝑣(𝑡) 𝑞!𝑝!,!

!

!!!

 

 
The other portion of the new population consists of vehicles that did not leave their 
position. Since the relative proportion of vehicles that did not travel during a time 
increment is the complement of the proportion that did travel, the number of 
vehicles remaining is the complementary probability times the number of vehicles 
at a particular destination exit, given by: 
 

[1 − 𝑣 𝑡 ]𝑞! 
 
Combining these two expressions gives the new population for each exit: 
 

𝑞(𝒕!𝟏)𝒊 = 𝑣 𝑡 𝑞!𝑝!,!

!

!!!

+ [1 − 𝑣 𝑡 ]𝑞! 

 
This equation can be expressed using matrices and vectors that have already been 
defined: 
 

𝐪𝒕!𝟏 = 𝑣 𝑡 𝐪𝒕 ∙ 𝐏 + 1 − 𝑣 𝑡 𝐪𝒕 
 
This process of finding the next population is similar to using a Markov chain, 
except that there is an extra term for the proportion of a population not 
participating in the transition process. 



	
  

 
Traffic Density 
Since the goal of this model is to predict where and when heavy traffic occurs, it is 
necessary to determine how many vehicles are traveling on each segment of the 
highway system during each time interval. In order to determine how many 
vehicles are traveling on a segment, we must determine which routes pass through 
each highway segment. A complication occurs at this point in the process since 
there are several ways to go from one exit to another. To simplify this, an 
assumption is made that vehicles will follow the shortest path between two exits. It 
can be argued that this assumption is not completely valid and that other ways to 
determine a path may yield a more precise model. This paper does not consider 
other path-determining methods (Lim, Balakrishnan, Gifford, Madden, & Rus, 
2011), yet nothing in the general framework of this model prohibits using other 
methods. An algorithm for finding the shortest paths on a graph between two 
vertices was developed by EW Dijkstra and will be used in this model. 

The number of vehicles traveling on a particular route from exit i to exit j 
was determined above as v(t)qipi,j. This value can be determined for each origin-
destination pair and a matrix constructed from them: 

 

𝐑 =

𝑣(𝑡)𝑞!𝑝!,! 𝑣(𝑡)𝑞!𝑝!,! ⋯ 𝑣(𝑡)𝑞!𝑝!,!
𝑣(𝑡)𝑞!𝑝!,! ⋱ ⋯ ⋮

⋮
𝑣(𝑡)𝑞!𝑝!,!

⋮
⋯

⋱
⋯

⋮
𝑣(𝑡)𝑞!𝑝!,!

=

𝑟!,! 𝑟!,! ⋯ 𝑟!,!
𝑟!,! ⋱ ⋯ ⋮
⋮

𝑟!,!
⋮
⋯

⋱
⋯

⋮
𝑟!,!

 

 
We can construct an (m × m) square matrix Q where each row is q: 
 

𝐐 =

𝑞! 𝑞! ⋯ 𝑞!
𝑞! 𝑞! ⋯ 𝑞!
⋮
𝑞!

⋮
⋯

⋱
⋯

⋮
𝑞!

 

 
Then the route matrix R can be rewritten using matrices: 
 

𝐑 = 𝑣 𝑡 𝐏⊙ 𝐐𝐓 
 
where the symbol ⊙ represents element by element multiplication of the matrices. 
The transpose of Q is needed since each row of R is concerned with a single origin 
exit. 



	
  

This matrix R shows how many vehicles are traveling on a particular route, 
but we are interested in how many vehicles are traveling on a particular segment of 
highway. This can be determined by taking the sum of all vehicles on all routes 
that pass through this segment. A matrix C can be constructed to count the total 
number of vehicles passing through each segment. An element of C can be 
described: 

 
𝑐!,!
= 𝑟!,!

!!!!!!!!!!

   , for  all  𝑟!,!   which  are  shown  to  pass  through  segment  (𝑖, 𝑗)   

 
The routes rx,y that pass through segment (i, j) are determined by application of 
Dijkstra’s Algorithm (Dijkstra, 1959) to the matrix D, which is the matrix that 
shows the distance between exits. From the example above: 
 

𝑐!,! = 𝑟!,! + 𝑟!,! + 𝑟!,! + 𝑟!,! 
 

Heavy traffic occurs in areas in which the traffic density passes above a 
certain limit, so it is necessary to determine the density for each section of 
highway. Since the number of vehicles per hour traveling on a particular segment 
is given by ci,j, the density (vehicles per mile lane) can be determined from: 

 
𝜌 =

𝑐!,!
𝑠 ∙ 𝑙!,!

, 

 
where s is the average speed of vehicles in miles per hour and li,j is the number of 
lanes from the matrix L on segment (i, j). This density can be compared to typical 
densities that occur during heavy traffic to yield a prediction about what the traffic 
flow should be like on this segment. 
 
Hypothetical Example of the Model 
Going back to the example from above, let us define a population vector q = 
(2000,3000,2500,4000,5000,3500,4500). The matrix Q is: 

 



	
  

𝐐 =   

20000 30000 25000
20000 30000 25000
20000 30000 25000

40000 50000 35000
40000 50000 35000
40000 50000 35000

45000
45000
45000

20000 30000 25000
20000 30000 25000
20000
20000

30000
30000

25000
25000

40000 50000 35000
40000 50000 35000
40000
40000

50000
50000

35000
35000

45000
45000
45000
45000

 

 
Let us also declare P with equal probabilities that a vehicle will come from any 
exit, which means that p1,j = p2,j = p3,j … : 
 

𝐏 =

0.1 0.15 0.15
0.1 0.15 0.15
0.1 0.15 0.15

0.2 0.25 0.05
0.2 0.25 0.05
0.2 0.25 0.05

0.1
0.1
0.1

0.1 0.15 0.15
0.1 0.15 0.15
0.1
0.1

0.15
0.15

0.15
0.15

0.2 0.25 0.05
0.2 0.25 0.05
0.2
0.2

0.25
0.25

0.05
0.05

0.1
0.1
0.1
0.1

 

 
and let v(t) = 0.1, then: 
 

𝐑 =

200 300 300
300 450 450
250 375 375

400 500 100
600 750 150
500 625 125

200
300
250

400 600 600
500 750 750
350
450

525
675

525
675

800 1000 200
1000 1250 250
700
900

875
1125

175
225

400
500
350
450

 

 
so the number of vehicles traveling on highway section (6,7) during this hour is: 
 

𝑐!,! = 250 + 400 + 400 + 350 = 1400 

 
If the average speed is 65 miles per hour, then the density ρ(6,7) is: 
 

𝜌!,! =
𝑐!,!
𝑠 ∙ 𝑙!,!

=
1400  vehicles/hr

65!"#$%
!"

∙ 3  lanes
≈ 7.179  vehicles/(mile ∙ lane) 

 
Comparing this result to actual traffic densities would allow prediction of heavy 
traffic. Notice that the only information needed besides the geometry of the road 



	
  

system was number of vehicles around an exit, probability of destination, average 
speed, and relative traffic volume for the entire road system during the time 
interval. It is worth noting that individual traffic volume measurements on each 
segment are not needed in this model. 

If we are interested in what traffic density is like at the next time interval, 
the formula for qt+1 can be used: 

 
𝐪𝒕!𝟏 = 𝑣 𝑡 𝐪𝒕 ∙ 𝐏 + 1 − 𝑣 𝑡 𝐪𝒕

= (2045, 3067, 2617.5, 4090, 5112.5, 3272.5, 4295) 
 
This vector can be used to find the densities during the next time interval. 
 
IV. Application of Model to the Greater Philadelphia Region 
 
The highway system around the Philadelphia region is commonly plagued by 
heavy traffic that can be difficult to anticipate. The model developed in this paper 
will now be applied to the Philadelphia highway system. In order for the model to 
be applied, certain assumptions about the region must be made. The level of 
validity of these assumptions will affect the predictive value of the model, and are 
not absolute. 

 
Assumptions in the Model 
Instead of looking at all of the hundreds of highway exits in the region, this 
analysis only looks at 46 strategically selected exits. The implicit assumption here 
is that only a certain number of exits need to be accounted for in order to get a 
reasonably accurate prediction, so long as they are chosen in such a way that the 
exits adequately cover the entire region being modeled. 

To determine the initial values for the population vector q, an assumption is 
made that the number of households (US Census Bureau, 2013) in an area is 
proportional to the number of vehicles in this area during the early morning hours 
(approximately 1AM). The number of households within a 1 and 2 mile radius of 
each exit was obtained from census data. This data is used as the population at time 
= 1AM. The rest of the populations are a result of the iterative process in the 
model, which evolves dynamically. 

The destination probabilities were derived from data about the number of 
workers in a given radius of each exit (US Census Bureau, 2013). During the hours 
of 5AM to 10AM, the proportion of workers in the area of an exit matches the 
probability that a vehicle will travel to this exit. This produces a transition matrix 
in which each column contains elements with the same probability. During the 
hours of 3PM to 4AM, the values of the transition matrix switches to being 



	
  

proportional to the number of households around an exit, which is what we 
assumed the initial population was. This should return the number of vehicles 
around an exit to the initial population at the end of each day. During the hours of 
11AM to 2PM, the transition matrix is assumed to be a combination of the other 
two transition matrices. So the average of these probabilities is used during the 
mid-day hours. The values of the v(t) function representing the relative volume of 
traffic using the network during time interval t was determined from past hourly 
traffic volumes (PennDOT, 2011). 

The average speed of vehicles on the highway is assumed to be 65 miles per 
hour. There are two problems with this assumption. First, every section of highway 
may not have an average speed of exactly 65 miles per hour. Second, during heavy 
traffic, the average speed of vehicles will decrease. The first consideration will not 
drastically affect the model, since dividing by a slightly different value, say 70 
miles per hour, will only reduce the density by a small percentage (7.1%). The 
second consideration has a greater possibility of affecting the results of the density. 
Heavy traffic will decrease the average speed and density will rise. Since detecting 
heavy traffic is the goal of this model, densities above the heavy traffic threshold 
will already be accounted for and an increase in density value will not change the 
categorical classification as heavy traffic. 

When applying the model to a real network, there will be highways that lead 
away from the network and do not connect to another exit. These lengths of 
highway should be considered when applying the model, since incoming traffic 
will affect densities. In order to account for these highways, exits were added at the 
end of these highway segments and given a starting population = 9999 and number 
of workers = 10000. These false exits provide a buffer to the road network to more 
realistically replicate traffic conditions at the edge of the network. Also, these false 
exits provide a way to represent traffic coming into or leaving the highway 
network at the edges. 

 
Data Analysis 
Four versions of this model were executed and analyzed. These versions are a 
result of manipulating the radius around exits in which population and number of 
workers were considered. To evaluate the models’ abilities to predict heavy traffic, 
the results of each model were compared to historical data (Google Maps, 2013). 
The Highway Capacity Manual for 2010 describes levels of services, which relate 
the traffic densities to relative heaviness of traffic flow (Transportation Reseach 
Board, 2011). The number of lanes on each highway segment was determined in 
order to calculate vehicle density (ITO Map, 2013). For this paper, levels of 
service of C (18 pc/mi/ln) or greater were considered heavy for the models based 
on populations within 1 mile of exits and levels of service D (26 pc/mi/ln) or 



	
  

greater were considered heavy for models based on populations within 2 miles of 
exits. 

The positive predictive value (PPV) was determined for each hour between 
7AM and 7PM for each weekday. Positive predictive value is obtained through 
application of Bayes’ theorem. The goal is to determine the conditional probability 
that there will be heavy traffic, given that the model predicts heavy traffic. Let H 
be the event that there is heavy traffic on a highway segment, then: 

 
PPV = P H     Predict  H)

=   
P Predict  H     H) ∙ P(H)

P Predict  H     H) ∙ P H + P Predict  H     Not  H) ∙ P(Not  H)
 

 
The positive predictive value is a measure of the true positive rate of heavy traffic 
compared to the total number of predicted heavy traffic areas. This value allows 
the models to be compared to each other and shows how likely their predictions are 
to be correct. 
 
The models will be referred to by the following for the rest of this paper: 
 
 1 miles population 

radius 
2 mile population radius 

1 mile workers radius Model A Model B 
2 mile workers radius Model C Model D 
 
Positive Predictive Value of Models 
(pop, 
workers) 

Model A 
(1,1) 

Model B 
(2,1) 

Model C 
(1,2) 

Model D 
(2,2) 

Overall 0.52086 0.42116 0.52319 0.41645 
     
Monday 0.38129 0.30717 0.36957 0.29934 
Tuesday 0.42446 0.35836 0.42029 0.34868 
Wednesday 0.56835 0.44369 0.55797 0.43421 
Thursday 0.58273 0.48805 0.60145 0.64748 
Friday 0.64748 0.50853 0.66667 0.51974 
     
7AM 0.3 0.44286 0.25714 0.4 
8AM 0.76923 0.65714 0.8 0.60869 
9AM 0.78333 0.71765 0.76364 0.67777 
10AM 0.31429 0.38824 0.31429 0.4125 



	
  

11AM 0.22 0.22857 0.22222 0.2125 
12PM 0.3 0.2625 0.3 0.23333 
1PM 0.28 0.24706 0.28 0.23333 
2PM 0.32 0.29412 0.3 0.28421 
3PM 0.6 0.55 0.62 0.56 
4PM 0.76923 0.63077 0.76923 0.65385 
5PM 0.78462 0.68889 0.78462 0.66207 
6PM 0.6 0.58519 0.69231 0.59286 
7PM 0.52086 0.42116 0.52319 0.41645 
 
Graphs of Positive Predictive Value 
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A comparison of the models indicates a greater sensitivity to the population 
radius than the workers radius. This is most clearly observed when evaluating the 
day-to-day change in PPV. In general, the predictive value was higher during times 
in which the relative traffic volumes were higher. Models A and C performed well, 
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with overall PPVs of 0.52086 and 0.52319 respectively. Both models considered 
populations within 1 mile. These models mostly performed better during times of 
heavier traffic, whereas all models performed about the same during non-peak 
hours. 

 
Conclusion 
 
The model presented here can be applied to any urban highway traffic network 
provided that sufficient demographic data is available for the region being studied. 
This is an economic advantage over other modeling methods that need to collect 
and update traffic data to construct an origin-destination matrix. An evaluation of 
these other models’ predictive value may give insight into whether or not there is 
an advantage to using them. 

Through the use of technology, vehicles are beginning to use an adaptive 
approach to route selection, which looks at current traffic conditions along with 
predicted conditions. Vehicles can now automatically be notified of changing 
traffic while en route and adjust accordingly (Dragoi & Dobre, 2011). As traffic 
control technologies continue to advance, our ability to avoid traffic congestion 
will improve and possibly change our disposition towards navigating on urban 
highway systems. 
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