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Introduction

Villanova Buddies is an organization that aims 
to promote inclusion and friendship by providing a 
space for students and individuals with intellectual or 
developmental disabilities to build relationships and 
socialize. Small Groups is a branch of the Villanova 
Buddies organization that partners six to 12 Villanova 
students with a group of three to five individuals with 
disabilities. Small Groups are a part of the Villanova 
Buddies organization to create smaller spaces with 
few people to further promote the friendships and 
connections initiated during Villanova Buddies’ other 
events. Some of these events include watch parties for 
Villanova games, picnics on campus, or holiday parties 
like Friendsgiving or Valentine’s Day. Small Groups meet 
during designated times throughout the semester. For 
example, the “Monday Small Group” meets one Monday 
evening per month throughout the semester. The time 
slot for each Small Group remains constant throughout 
the entire semester so everyone can plan accordingly 
to be consistently present. Having all members at all 
of their respective Small Group events is important for 
developing better connections and friendships. Because 
of this, we needed to determine the best way to ensure 
that we placed each student in a Small Group for which 
they would almost always be available.  

In  order to accommodate students as well as 
possible, I attempted to manually assign students to 
Small Groups at the beginning of the Fall 2019 semester. 
The idea for this project originated from the desire to 
reduce the many hours spent developing solutions. For 
Small Groups, we asked all students to rank their time 
slot preferences from one to five (with one indicating a 
strong preference) through a Google Form. They also 

had the opportunity to select “Not Available” for any 
number of time slots when they signed up to participate. 
The list of five time slots was selected before student 
members had the opportunity to sign up because we 
chose time slots based on the schedules of non-student 
members, since they have to travel to campus. The same 
was true for the student Group Leaders, since they must 
be present for all Small Group activities throughout the 
semester. Survey respondents indicated their gender 
and class year in the sign-up form. As Small Groups 
are formed, it is important to keep them as balanced 
as possible in relation to gender and class year so that 
we can have a diverse mix of individuals, personalities, 
and people. We aspire to create the most well-rounded 
spaces that we can. For example, we did not want a 
person of a certain class year or gender to be in a group 
by themselves. Due to the demographics of those who 
signed up, I decided to characterize students as either 
“Freshman” or “Non-Freshman” to create two categories 
for this attribute. For gender, “Male” and “Female” were 
the only two gender options selected by the participants.

Fall 2019 was the first semester for Small Groups, 
and I assigned the groups by hand. I wondered how I 
could approach this problem from a mathematical 
perspective. How could I find an optimal, rather than 
simply good, solution to allocate students into balanced 
groups while honoring preferences for time slots?  This 
problem is what led me to Operations Research, a branch 
of applied mathematics, so I could learn the language 
behind the mathematical model that I wanted to write 
for this Villanova Buddies problem.
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Data

Table 1 shows the data from the first three students, 
taken from a sample of the full data table in Appendix 2 
(which can be found in the Web version of this article) of 
the data collected from all of the students that signed up 
for Small Groups in Spring 2020. Table 2 and Figures 1 
and 2 provide summaries of the data collected through 
surveys.

In operations research, optimization problems 
involve determining the values for decision variables 
which maximize or minimize an objective function, 
all while staying within the boundaries of certain 
restrictions, or constraints. This was an optimization 
problem because I was attempting to find the best way 
to do something or best combination of something 
(1). The decision variables are the student group 
assignments. Since student scheduling preferences 
were recorded, with lower values indicating stronger 
preferences, I wanted to minimize the total of all the 
students’ preferences of all the groups into which they 
were placed. In order to accomplish this, I summed 
each student’s preference. For example, if Student 1 was 
placed in their second choice time slot, that added 2 to 
the total sum of all preferences. The data was converted 
from text to numbers, as Table 3 displays. In the table 
that follows, Not Available = 50 because if I were to 
add all of the numbers and try to find the combination 
of all numbers to get the lowest value possible, a 50 
would never be optimal; it would raise the total value 
by a substantial amount compared to all other numbers 
(1-5). Inputting a 50 for “Not Available” prompts the 
model not to select it because it is much higher than 
all other values. With the data converted to numbers, 
I formulated a model to find the best solution. Table 3 
shows the data for Spring 2020.

Table 1. Spring 2020 Small Group Sample Data

Table 2. Spring 2020 Small Group Participant Composition

Figure 1. Spring 2020 Small Group Participant Composition

Figure 2. Spring 2020 Small Group Participant Time Slot 
Preferences

Table 3. Spring 2020 Data
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Methods and Results

Initial Methodology

The basis of this problem is the understanding that 
the student is either in or is not in a group (time slot). 
I defined the variable xij for each student, where i is 
the number of the student and j is the group number. 
The total number of xij variables is the product of the 
number of groups and the number of students. In this 
case, with 40 students and five groups, there were 200 
xij variables. Each student has five variables in this set 
of students and groups, one for each group. The value of 
these variables will be either 0 or 1. Thus, I define:

for each student. For example, x3,5 is the third student’s 
variable for the fifth group, which is Sunday Afternoon. 
I utilized the preferences for each student in the 
formulation by multiplying each of the xij variables with 
their respective Preference parameter, which I called 
pij. For example, p3,5 = 1 since the Sunday Afternoon 
time slot was the first choice for the third student. As 
previously discussed, I wanted to minimize the total 
sum of all preferences for all students, but only for 
the groups within which they were placed. I did this 
by taking the sum of pij xij. Doing this would yield the 
sum of all the students’ preferences only for the groups 
they were in, because as xij is defined, it will = 0 if the 
student is not in the respective group, meaning that the 
whole pij xij term will = 0 as well. The sum is this once 
formulated: Z=∑40

i=1∑5
j=1pij xij. This notation takes the 

sum of the product of xij and pij over all the combinations 
of variables for i=1..40 and j=1..5. This worked because 
both the x and p variables have the same subscripts, so 
their respective sizes are the same. Once this sum is 
taken, the sum is Z.

I used the software package Lingo to generate a 
solution for all models. Lingo is a product of LINDO 
Systems that specializes in non-linear, linear, and integer 
programming (3). This project primarily uses linear 
programming, with some use of integer programming 
models (4). At this point, if I ran Lingo with the data and 
defined these variables in order to minimize Z, I would 
have received an answer resulting in every student 
not being placed in a group, which would result in the 
summation of pij xij equal to 0. This happens because if 
a student is not in a group, a 0 is added to the total sum 
of preferences. Doing this for all students would result 
in a total of 0, which is the minimum possible value. 

However, as previously discussed, I had other factors to 
consider, such as group size, gender, and class year of the 
students. The most important factor is to formulate the 
code in such a way that every student must be assigned 
to a group. Villanova Buddies is focused on inclusion, so 
it is important that every student is placed in a group. 
Additionally, students can only be in one group. Writing 
these two statements together provides the notation that 
adding up every students’ xij variables should all = 1.  
This means that every student would be in a group, but 
not more than 1 group. For student 1,

the shorter way to write this constraint is  ∑5
j=1x1,j = 1.  

Since this constraint would have to be repeated for all 
students (i=1..40), ∑5

j=1x1,j= 1 (for i=1..40) is used. This 
set of constraints assures that every student is included 
without placing a student in multiple groups.

The next thing I formulated was the group size. I 
wanted all groups to be the same size, which, in this 
case, meant eight students per group. The formulation 
for this constraint is ∑40

i=1xij=8 (for j=1..5). This 
summation states that the total of the students for each 
group (1-5) must be equal to 8. With the xij variables 
only = 1 when the student is in the group, taking the 
sum of all the variables for each group time slot overall 
students, i, will give the number of students that are in 
each group, j.

Additional considerations included the balance the 
genders and class years of all the students who signed 
up for Villanova Buddies. To define this data, it is placed 
in column vectors aligning with the student numbers, 
after it is converted to a number, using the following 
notation: 

Each of the two attributes, year and gender, has its 
own column vector, so each of these are 40 rows by 1 
column to match the number of students. The data used 
after applying the above rules are shown in Table 3. 
Additionally,  gi and yi match the rows of the xij and pij 
vectors since they have 40 rows (one for each student). 
I decided to apply the gender and year constraints by 
selecting minimum and maximum values for both gender 
and class year for all groups. Since there are 13 males 
signed up for Small Groups, that is an average of 2.6 per 
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group.  According to previously stated objectives, it was 
important that no male be the only male in the group, 
so I set a minimum of 2. A maximum was not needed 
because with a minimum of 2, no group could have 
more than 5, which is within the acceptable range for 
males. However, I decided to apply a maximum of four 
males per group regardless. By deduction, since there 
will be eight students per group, the range of females for 
each group is 4-6. The same logic applies to class year. 
With close numbers of freshman and non-freshman, 23 
and 17 respectively, I decided to place a minimum of 3 
and a maximum of 6 freshmen per group. This results 
in a range of 2-5 non-freshmen per group, which is 
consistent with the fact that freshmen barely outnumber 
the non-freshmen. In order to add these limitations to 
the model, I multiplied gi and xij together and considered 
the sum. Since both of these variables are binary, 1 or 
0, the only way to get a non-zero value from gixij, is for 
both of the terms to be 1. This meant that student i was 
placed in group j and student i is a male. The values that 
have been determined are the minimum and maximum 
values of the total males for each group j. For the 
constraint, I wanted to sum the total of gixij for every 
group and for each of these sums to have minimum and 
maximum values that I previously determined. From 
this, the constraints   2≤∑40

i=1gi xij ≤4 (for j=1..5) were 
formed (4). The same concept used for gender was also 
applied to class year using its minimum and maximum 
values that were already determined from the collective 
numbers of freshmen and non-freshmen signed up. Using 
this data, the following constraints were formulated 
as  3 ≤∑40

i=1yixij ≤6 (for j=1..5) (4). Both constraints 
needed to be repeated for groups 1-5 because all of the 
Small Groups have the same constraints and gender and 
year requirements.

Looking at this minimization and all the constraints 
together, I formed the following model, Model 1, which 
is called a linear programming model in Operations 
Research:

Appendix 3 shows Model 1 expanded to display 

all the coefficients plugged in, summations expanded, 
and constraints required to run the model and obtain 
an answer.

There are four major assumptions for this model (2). 
The Certainty assumption is the assumption that all the 
data used in the model is accurate and known without 
a doubt. This assumption held strongly for this model 
because, to best of my knowledge, the data was accurate 
and comprehensively representative of the students that 
signed up for Small Groups. The assumption is that all 
students filled out the form and submitted information 
that accurately represents their class year, gender, and 
their preferences and availability. Outside factors such 
as schedule changes or other commitments that could 
arise after a student has filled out the form could affect 
the Certainty of the data.  

Proportionality states that the variables are only 
raised to the first power (2). Additivity states that 
there are no cross-product terms (2). Proportionality 
and Additivity both hold perfectly for this problem. 
No variables are raised to a power other than 1, and 
none of the variables are multiplied together. Although 
variables were multiplied by coefficients and vectors 
of coefficients, they are not multiplied together in this 
model with other variables.

Divisibility is the assumption that the decision 
variables (xij) can be fractions or decimals-- any real 
number) (2). As written, the model assumes Divisibility. 
Divisibility would mean that students could be partially 
in one group and partially in other groups, but this is 
not what Villanova Buddies wants for the Small Groups. 
This problem is easier to solve as a linear program 
rather than an integer problem, so this is what I tried 
first. The xij variables were limited to any real number 
between 0 and 1. The aim was that this would result in 
only 0 and 1 values, not any fraction or decimal values 
for the resultant values of the xij variables. This is a 
valid approach in linear programming because some 
problems output integer solutions even when they are 
not forced to do so (2).

This model is related to the form of an Assignment 
or Transportation Problem (2) with added constraints. 
Each student needs to be assigned to one group only. All 
students must be assigned to a group, and all of the groups 
must be filled to a certain capacity. The gender and year 
constraints were added to a traditional Assignment/
Transportation Problem, but this follows the same logic 
and has the same goal in mind of assigning students to 
various destinations, which are groups in this problem.

After first formulating this model and understanding 
the optimization which Lingo would perform, my initial 
estimate was that the optimal value for Model 1 would 
be close to Z=51. The data showed that there appeared 
to be a spread of the number of timeslots that students 
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had for their first choice. For example, all respondents 
did not list one time slot that they all wanted. With this 
spread, I hypothesized that approximately 25% of the 
students who signed up would not receive their first 
choices, and approximately one or two would receive 
their third choice. This is how I ended up with a value 
of Z=51, which exceeds 25% more than the minimum 
optimal value possible, which is Z=40, if everyone 
receives their first choice.

Initial Results

The solution from Model 1 is shown in Table 4. 
This table format is the format I will use to present all 
model data and solutions throughout this report. The 
highlighted green boxes are the groups in which each 
student is placed. This format allows us to see which 
students received which of their time slots and what 
preference corresponds with the timeslot in which they 
were placed. The top of this table also provides the 
statistics needed to compare the groups to one another 
by the year and gender characteristics. The full Lingo 
Solution Report can be found in Appendix 4, but all the 
necessary information from the Report is in Table 4.

All values fell within the ranges that I defined, and 
the groups that were formed were balanced in size, 
gender, and class year. As seen in Appendix 4, the optimal 
value is found to be Z=46. The lowest possible optimal 
number was 40 because if every student received the 
best possible time slot (their first choice), then the sum 
would simply be 1(1) 40 times over summed together, 
which would = 40. Since the optimal value is Z=46, 
this means that six preference points were lost due to 
one or a combination of the constraints. This could be 
six students received their second choice, three students 
getting their third choice, etc., or some combination of 
these. I ensured that no student was placed in a group 
for which they are not available. Since the coefficient of 
pij is 50 for the “Not Available” selection, if the optimal 
solution does not exceed 89, then no student could 
have been placed in a group for which they were not 
available. The minimum for a student being placed in 
a group for which they are not available is 89; if all 39 
other students received their first choice, the solution 
would be 1(1) 39 times over and 1(50) 1 time, which is 
39+50, or 89.

By analyzing the solution and comparing the group 
placement to the original data of Availability and 
Preference, I found that 34 students received their first 
choice time slots while six were placed in their second 
choice group. This makes sense because 34(1)+6(2)=46, 
which verifies the solution above. After looking at the 
results, the optimal solution of Z=46 matched up with 
the solution and the initial data. The results showed 
that the model solves for the optimal groups taking the 
data into account because all of the students got one of 
their top two Small Group choices, and the groups are 
balanced in size, gender, and class year in relation to 
each other. The optimal preference value of the model is 
due to the minimization, while the group balance can be 
attributed to the constraint portion of the model.

Model 1 was used to formulate the groups for the 
Spring 2020 semester. At the point in the semester 
when I needed the groups, this was the only model 
formulated. Using these groups, our attendance went up 
from an overall attendance rate of 66% in Fall 2019 to 
75% in Spring 2020 across all Small Groups: an increase 
of 9 percentage points. This suggests that students were 
placed in groups that they wanted, and the groups 
were balanced, so they were able and willing to attend 
more than in the past. The groups were quite evenly 
distributed in class year and gender, which is a desired 
result of this model. As coordinator of the Small Groups 
program, I received more positive feedback regarding 
the groupings for the Spring 2020 semester compared 
to those of the Fall 2019 semester; the groups that the 
model produced were more successful than those that 
I  formed without the model. This feedback provides 

Table 4. Model 1 Solution
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real-world validation to the success of this model. This 
solution shows that the linear program outputs integer 
values for the xij variables. Even though I did not add 
constraints to force them to be integer values, all the xij 

variables were found to be 0 or 1.
This initial solution can be verified by adding the 

@BIN constraints to all of the decision variables (the xij 
variables), which forces them to be 0 or 1. This restriction 
needed to be satisfied since in real life; we did not want 
students to be split between groups. The current model 
does allow that to happen, although it does not in the 
solution for my data set. This has been checked by 
adding the @BIN function for all the variables, and the 
same solution was found as the initial solution. Since 
this solution matches, the solution is now verified.

Further Development

Model 1 is long and drawn out, with Appendix 3 
containing four pages of code, because constraints that 
were needed for every group or every student were 
written out for each one. Summations and FOR loops 
were not used to formulate the model, so the process 
was long, messy, and not easily applicable for future use. 
To use this model again, I would have to rewrite every 
coefficient and add or remove variables depending on 
the number of students and number of groups. I spent 
about five hours coding and inputting all of the figures 
into Model 1. Doing this again would require another 
two or three, which is not efficient since this process 
must be done for Small Groups for every semester.

Model 2, along with all the later models of this 
paper, all call on an Excel file for the data to make it 
easier to set up. The data that I placed in a file contains 
the same format and information that comprises the first 
eight columns of Table 3. This table is used because it 
has all the data needed for the project in numeric form, 
all together in one table. To determine the sizes of the 
Small Groups, this code divides the number of students 
by the number of groups:

to determine the average group size. This model uses 
the formula

where attribute corresponds to either the gender or 
class year numbers. Total gender and total year are 
the total number of all males and freshmen signed up 
respectively for Small Groups. This model determines 

the minimum and maximum values for the gender and 
year constraints as well as the students per group by 
using the

calculation, which gives an average of the number of 
either males or freshmen that each group will have.  ±1 
was used for these constraints because if the constraints 
did not have a ±, then the gender and year constraints 
for each group would be binding to the average of both 
males and freshmen per group.  The minimum number 
of males and freshmen for each group is:

This formulation for the constraints proved to give 
answers that were not feasible, as the optimal solution 
shown below was found to be Z=46.2 with students 5, 
7, 21, 32, and 38 all placed in partial groups.  The boxes 
highlighted in grey correspond to groups that a student 
is “partially in” according to the code, which is not 
possible. In the grey boxes, along with the preference for 
the time slot, I included the decimal value for the solution 
from Lingo to see how the students were split between 
groups. Model 2, shown below, was the shortened 
version of the new model that utilized summations and 
FOR loops to repeat constraints that are identical. Table 
5 shows the solution from this model.
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The reason this solution is infeasible is because 
when (Attribute Total)/(Total Groups)±1 is used, 
it creates non-integer constants in constraints. For 
the data used, the total males in each group was 
1.6≤males≤3.6 and the total freshman per group was 
defined 3.6≤freshman≤5.6. Making these constraints 
with decimal minimum and maximum values creates an 
issue that is not present in Model 1. With this change, 
either the model must have binary variables (integer 
programming) or the constraint right hand sides must 
contain whole numbers as they are in Model 1.

The two ways to fix this issue are shown below with 
two different types of models.  Model 3 makes all of 
the variables binary using the @BIN function in Lingo.  
This produces an integer optimal solution even though 
the constraints still have non-whole-number minimums 
and maximums. The changes made to Model 2 in order 
to create Model 3 and its resulting solution (Table 6) are 
both shown below. For this and all later models, model 
changes take place only in the @FOR lines of Model 2.

Although the change made to the code by adding the 
@BIN function solved the problem of having students 
fractionally divided between groups, a new issue was 
presented by using this function. Although the code 
appears to restrict the group sizes to be 7<groups<9, 
but not exactly 7 or 9, this would infer that the group 
sizes for each timeslot would have to be 8 students. 
Although this assumption was made, the group sizes 
in this solution are 7, 8, and 9. After clarification with 
Lingo syntax, using the < or > signs is the same as 
using the ≤ or ≥ signs. Therefore, Model 3 actually 
used 7≤groups≤9 for group size. This shows that 
without using the @ROUND family of functions, there 
is no clean and easy way to generally write the code to 
make the group size binding when there is a perfectly 
divisible number of students per group.  

The next modeling approach to this problem is 
looking at the @ROUND functions (rounding values up 
or down), and not using the @BIN function. This should 
resolve both the initial problem of fractional students 
in groups along with the problem of not having the 
correct group size that is identified. The next model, 
Model 4, uses some of the family of @ROUND functions 
in Lingo. The idea of this model is to use the same 
thought process discussed earlier, of taking the average 

Table 5. Model 2 Solution Table 6. Model 3 Solution
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students per group along with males and freshmen per 
group.  By doing this, the code calculated the constraint 
minimum and maximum values itself without having 
to input them. The key part in this model is that when 
the average of students, males, or freshmen is used, one 
of the @ROUND functions is used with it. Using one of 
the @ROUND functions instructs Lingo to round that 
number to the nearest specified decimal place. Selecting 
0 decimal places will result in a whole number result 
regardless of whether the average number of students, 
males, and freshmen is a whole number.  In this model, I 
used @ROUNDUP and @ROUNDDOWN, which instruct 
Lingo to either round up or round down the value.  For 
the minimum constraints, I used @ROUNDDOWN, 
and for the maximum I used @ROUNDUP. Using this 
combination of constraints creates a range into which 
the values for students, males, and freshmen per group 
can fall, which is Model 4.

For Model 4, sensitivity analysis was performed 
by changing the ranges for the gender and class year 
constraints. In Model 4, the ranges for the constraints 
for both class year and gender are as small as possible 
at only 1 each, while the group size is held to 8. The 
@ROUNDUP and @ROUNDDOWN functions in Lingo 
were used for these constraints because this provides a 
small range of 1 unit for constraints. The average males 
per group and freshmen per group are 2.6 and 4.6, 
respectively. The @ROUNDUP function is used to find 
the upper bound of these 2 values, which are 3 and 5, by 
rounding up the two average values (2.6 and 4.6). The @
ROUNDDOWN function is used to find this lower bound 
of these constraints, which are 2 and 4, by rounding 
down the two average values (2.6 and 4.6). This is how 
gender has a range of  2-3 while class year has a range of 
4-5. These short ranges restrict the group placements of 
students and raises the optimal solution to Z=51, which 
is less favorable than any earlier solution.  The complete 
optimal solution is shown in Table 7.

Comparing this to the original model, Model 1, 
in which the optimal solution was Z=46, more people 
recieved less desirable preferences than previously. The 
constraints are tighter, which results in more evenly 
balanced groups. The next model I evaluated was Model 
5, shown below. It uses @ROUND function and then 
adds or subtracts 1 from that value to get the range for 

constraints. This combines what I have done in multiple 
previous models. It uses the logic of utilizing ±1, while 
also using one of the @ROUND functions so the bounds 
of the constraints will still be whole numbers. This 
creates a range from minimum to maximum values for 
constraints to be 2 units instead of the tighter 1-unit 
range in Model 4. With the round function being used, 
2.6 and 4.6 are rounded up to 3 and 5, respectively. 
After this, 1 is added or subtracted to this new rounded 
number to obtain a range for both attributes. Here, 
gender has a range of  2-4, while class year has the range 
4-6. Since these constraints are looser, the optimal value 
is expected to be lower and this is found to be true.  
Z=48 for Model 5, and the model and solution (Table 8) 
are both shown below. 

Table 7. Model 4 Solution
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Lastly, the widest range I tested used the                         
@ROUNDUP and @ROUNDDOWN functions and then 
added or subtracted 1 for Model 6. Similar to Model 4, 
the @ROUNDUP and @ROUNDDOWN functions are 
used to find the range of the acceptable attribute values 
for each group. This model also used  ±1 in conjunction 
with the @ROUNDUP and @ROUNDDOWN functions. 
The averages of 2.6 and 4.6 are rounded up and down to 
2 and 3 for gender and 4 and 5 for freshmen. After this, 
1 is subtracted from the minimum, while 1 is added to 
the maximum. This created a larger range for Model 6 
than Models 4 and 5. For Model 6, Z=46, which is the 
lowest value of the three models analyzed. Its optimal 
value is identical to Model 1. This comparison makes 
sense because the ranges for the constraints in the 
Original Model were 2 and 3 for gender and class year, 
respectively. In the original model, the constraint bounds 
were 2≤males≤4 and 3≤freshmen≤6. The constraints 
here in Model 6 define the bounds as   1≤males≤4 and 
3≤freshman≤6. These numbers are almost identical, 
which is why the solutions of this model and the original 
model would be the same. The model and solution (Table 
9) for Model 6 are depicted next.

Discussion

I attempted to reduce bias by assigning numbers 
to all of the students instead of keeping names with 
the calculations and optimization process. Students 
could have affected their own data submission for 
availability depending upon friends’ selections of time 
slots. Although this information may not be valid in 
ranking their availability, it does correctly represent 
their preference of Small Groups that they want to be 
placed in, so this does not negatively affect the model.  

One way that the model could be stronger would 
be by having students place a relative weight on their 
preferences instead of just ranking them 1-5 or “Not 
Available”. Giving one student their second choice 

Table 8. Model 5 Solution

Table 9. Model 6 Solution
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versus their first choice might not be important to some 
people, but it could be important to other people. Lingo 
considers all these differences equivalent, and no way 
of measuring these differences has been accounted for 
in these models. Taking these differences into account 
would result in a slightly better model of what I am 
optimizing because it would include the magnitude of 
difference in desire for group 1 versus group 2 rather 
than placing the same weighted difference between 
1-5 as the current model and survey system does. This 
change would be easy to make as it would not change 
the process of finding the minimal optimization, but 
it would simply require changing the verbiage on the 
survey and how the data is taken.

In conclusion, the formulation of this model for the 
Villanova Buddies Small Groups has been a successful 
tool for creating Small Groups. This model was applied 
this semester and I will be able to use it in following 
semesters. In efforts to compare these models to my 
manual results, I retrofitted Model 3 with handpicked 
constraint bounds to the Fall 2019 pool of students. By 
hand, I received a Z value of 64, and these were the 
assignments actually used for Fall 2019, but using the 
model, I found a solution that has a Z value of 57. This 
shows that the model successfully creates significantly 
better results than fomulating the groups by hand. 

Ultimately, Models 4, 5, and 6 are the same Model, 
but they use different formulas to determine the 
minimum and maximum values for the constraints. 
These differences are important because these 
constraints dictate which students can and cannot be 
in which groups. Although the differences between the 
Models are subtle, they can be used together to get a 
better overall picture of the data present.

When I evaluate another set of students using 
one of these models, I will use Models 4, 5, and 6 to 
decide which Model I want to use to place groups. If it 
is possible to use the results from the Model that uses 
the tightest constraints, Model 4, without a significant 
penalty in objective function value compared to Model 
6, I will use it. However, there is a chance that Model 
4 is not feasible for a data set, or that the value of its 
objective function (Z) is much higher than Model 6. In 
the case of the data from the Spring 2020 semester, the 
difference from Model 4 to Model 6 was 5 Preference 
units, so I would consider using Model 5 or Model 4 in 
the future. I believe that it could be worth sacrificing 
one Preference unit per group in order for all 5 groups to 
be more properly balanced. Weighing and balancing the 
differences in total preference points versus the level of 
balance of gender and class year for all of the groups is 
key to considering which of the solutions to utilize in the 
formation of the groups. Considering multiple models 
helps get a better perspective of the data set that I am 

working with rather than only looking at one view via 
a single Model. One of the reasons that I believe that all 
three models work well for the data is because we have 
a diverse group of students involved with Villanova 
Buddies. Because of this, it is easier to divide up all of 
the groups because there are enough members of every 
class year and gender to populate the groups.

One thing to keep in mind when comparing all the 
models is that depending on the data for the students 
of a given semester, the constraints for the attributes 
will change. In the Spring 2020 data, it happens that 
the lower limit on males in a group is 1 in Model 6. 
However, referring to the idea behind balancing groups 
in attributes as discussed previously, this would not be 
an ideal situation. Thus, in the case of placing a male, 
female, freshman, or non-freshman in a group by him 
or herself, reverting to the tighter model would be 
beneficial. In the case of Spring 2020, looking at Model 
5 rather than Model 6 would be beneficial because the 
Model 5 constraints do not allow any student from any 
attribute to be alone in a group. This is something to 
keep in mind since these models are formulated for any 
data set, not just a singular semester’s pool of students. 
This is one of the reasons that a holistic view of all 3 
models looking at different constraint ranges provides 
a balanced view of all the students, making none of the 
3 better than the rest, rather than looking at all the 
solutions in unison to come up with the best fit of groups 
for a given semester.

There are two ways to assure that through the 
model, no student will be alone in any group for any 
attribute. The first way to do this is to manually pick 
limits and plug them directly into the program by hand. 
This way is similar to what was done in Model 1, except 
the same idea can be applied to the later Models 4, 5, 
and 6 with the Excel shortcut and @FOR loops. Another 
is by including constraints to make sure that in every 
group, there are at least two males, two females, two 
freshmen, and two non-freshmen by adding constraints 
in all of the models to state this. These constraints 
would be

                                                                                                                                                                  
to make sure that there are at least two males and two 
freshmen per group. Making sure that there would 
be two females and two non-freshmen in each group 
would utilize the minimum group size, which would 
be @ROUNDDOWN (n/g). After this, 2 would be 
subtracted to find the maximum for both males and 
freshmen. If the maximum for males and freshmen 
is the total of the minimum group -2, then this also 
means there will be at least two females and two 
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non-freshmen in every group.  Therefore, the added 
constraints to each model would be the following:

Going forward, I would like to incorporate these 
constraints into Models 4, 5, and 6, as this would 
eliminate the step of making sure that each group would 
have two students with each attribute. In addition to 
this, changing the form to sign up for Small Groups 
to reflect the relative weighted preference rather than 
the simple ranking 1-5 is another way to improve the 
models.
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